Suppr超能文献

通过单细胞RNA测序和加权基因共表达网络分析对前列腺癌分子机制进行综合分析。

Integrative analysis of molecular mechanisms in prostate cancer via single-cell RNA sequencing and weighted gene co-expression network analysis.

作者信息

Zhai Jing, Wang Yizhou, Zhang Yu, Zhu Wenhui, Xu Xinyu, Peng Yu, Ding Guanxiong

机构信息

Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Department of Urology, Affiliated Changshu Hospital of Nantong University, Nantong University, Changshu, China.

出版信息

Sci Rep. 2025 Sep 26;15(1):33076. doi: 10.1038/s41598-025-15682-6.

Abstract

Despite extensive prior research on prostate cancer (PCa) transcriptomics, the molecular mechanisms underlying the disease's progression, particularly in the castration-resistant or metastatic stages, remain incompletely understood. The majority of recent research has concentrated on bulk RNA sequencing, which could mask the variation found in tumor microenvironments. This study aims to address this gap by integrating single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing with weighted gene co-expression network analysis (WGCNA) to investigate the molecular mechanisms of PCa at a higher resolution. In order to further individualized treatment plans for PCa, we aim to discover important genes and signaling pathways that could be used as therapeutic targets. We first preprocessed expression profile data from prostate cancer tissue samples, selecting 9,809 high-quality cells from a dataset. Following batch correction with Harmony and dimensionality reduction with principal component analysis (PCA), we used the Louvain clustering algorithm to divide the cells into discrete subtypes. The clusters were then visualized using t-SNE. This resulted in 16 cellular subtypes categorized into five major cell types: epithelial cells, monocytes, endothelial cells, CD8 + T-cells, and fibroblasts. Analysis of receptor-ligand pairs uncovered significant interactions between monocytes and both tumor cells and endothelial cells. Applying the high-dimensional WGCNA (hdWGCNA) method to construct a gene co-expression network, we detected seven gene modules, four of which were highly expressed in tumor cell subtypes and contained 380 key genes. Combining pathway analysis, we ultimately screened six key genes: CNPY2, CPE, DPP4, IDH1, NIPSNAP3A, and WNK4. We used Cox univariate regression and least absolute shrinkage and selection operator (lasso) regression techniques to build a prognostic prediction model that included these six important genes based on clinical data gathered from PCa patients. The prognostic prediction model constructed in this study demonstrated excellent predictive performance in both the training set and an external validation set, with the high-risk group showing significantly lower overall survival (OS) than the low-risk group. Furthermore, there was a substantial correlation found between risk scores and several immune-related gene sets, chemotherapeutic drug sensitivity, and tumor immune infiltration. High- and low-risk groups exhibited significant differences in immune cell content, immune factor levels, and immune dysfunction. Further analysis revealed significant correlations between the expression levels of model genes and multiple disease-related genes. Through Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA), we uncovered perturbations in multiple signaling pathways in high- and low-risk groups, potentially impacting the prognosis of PCa patients. This study uncovers key genes and signaling pathways in the prostate cancer tumor microenvironment, particularly genes such as CNPY2, CPE, DPP4, IDH1, NIPSNAP3A and WNK4, which have potential as therapeutic targets. Our findings provide new insights into personalized treatment strategies for PCa and warrant further clinical validation in the future.

摘要

尽管先前对前列腺癌(PCa)转录组学进行了广泛研究,但该疾病进展的分子机制,尤其是在去势抵抗或转移阶段,仍未完全了解。最近的大多数研究都集中在批量RNA测序上,这可能会掩盖肿瘤微环境中发现的变异。本研究旨在通过将单细胞RNA测序(scRNA-seq)和批量RNA测序与加权基因共表达网络分析(WGCNA)相结合,以更高分辨率研究PCa的分子机制,从而填补这一空白。为了进一步制定PCa的个体化治疗方案,我们旨在发现可作为治疗靶点的重要基因和信号通路。我们首先对前列腺癌组织样本的表达谱数据进行预处理,从一个数据集中选择了9809个高质量细胞。在用Harmony进行批次校正和用主成分分析(PCA)进行降维后,我们使用Louvain聚类算法将细胞分为离散亚型。然后使用t-SNE对聚类进行可视化。这产生了16种细胞亚型,分为五种主要细胞类型:上皮细胞、单核细胞、内皮细胞、CD8 + T细胞和成纤维细胞。受体-配体对分析揭示了单核细胞与肿瘤细胞和内皮细胞之间的显著相互作用。应用高维WGCNA(hdWGCNA)方法构建基因共表达网络,我们检测到七个基因模块,其中四个在肿瘤细胞亚型中高表达,包含380个关键基因。结合通路分析,我们最终筛选出六个关键基因:CNPY2、CPE、DPP4、IDH1、NIPSNAP3A和WNK4。我们使用Cox单变量回归和最小绝对收缩和选择算子(lasso)回归技术,基于从PCa患者收集的临床数据构建了一个包含这六个重要基因的预后预测模型。本研究构建的预后预测模型在训练集和外部验证集中均表现出优异的预测性能,高危组的总生存期(OS)显著低于低危组。此外,风险评分与几个免疫相关基因集、化疗药物敏感性和肿瘤免疫浸润之间存在显著相关性。高危组和低危组在免疫细胞含量、免疫因子水平和免疫功能障碍方面表现出显著差异。进一步分析揭示了模型基因表达水平与多个疾病相关基因之间的显著相关性。通过基因集变异分析(GSVA)和基因集富集分析(GSEA),我们发现高危组和低危组中多个信号通路存在扰动,这可能影响PCa患者的预后。本研究揭示了前列腺癌肿瘤微环境中的关键基因和信号通路,特别是如CNPY2、CPE、DPP4、IDH1、NIPSNAP3A和WNK4等基因,它们具有作为治疗靶点的潜力。我们的发现为PCa的个性化治疗策略提供了新的见解,未来值得进一步的临床验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb6/12475054/0f25acd46867/41598_2025_15682_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验