Suppr超能文献

探索重症监护病房中急性肾损伤的发展轨迹:一项基于人群的队列研究。

Exploring trajectories of acute kidney injury in the intensive care unit: a population-based cohort study.

作者信息

Wan Ding-Yuan, Luo Xin-Yao, He Min, Zhang Zhong-Wei

机构信息

West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.

Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Sci Rep. 2025 Sep 26;15(1):33056. doi: 10.1038/s41598-025-11587-6.

Abstract

Acute kidney injury (AKI) represents a complex disorder characterized by distinct subphenotypes with varied clinical presentations and prognoses. Categorizing these subphenotypes may facilitate standardization of research cohorts and optimization of therapeutic strategies. The endothelial activation and stress index (EASIX) quantifies thrombotic microangiopathy severity, a pathophysiological hallmark of AKI. Consequently, we utilized EASIX trajectory analysis to identify AKI subphenotypes. AKI patients were identified from the eICU Collaborative Research Database to develop a group-based trajectory model. EASIX scores recorded during the initial seven ICU days were utilized for trajectory modeling. Patients were stratified into distinct subgroups according to the best model. Variable selection was performed using LASSO regression, followed by multivariate Cox regression analyses to calculate hazard ratios (HRs) across the identified subgroups. An independent validation cohort comprised patients from the central ICU of West China Hospital (WCH). The study's primary endpoints included all-cause in-ICU and in-hospital mortality across the identified subphenotypes. The final analysis included 317 patients from the eICU database and 58 patients from WCH. Based on the EASIX trajectories derived from the first seven ICU days, we identified two distinct subphenotypes: a "Stably High" (SH) group and a "Decreasing" (D) group. Compared to the D group, the SH group demonstrated significantly higher mortality risk, with an HR of 2.26 (95% CI 1.14-4.26, p = 0.018) for ICU mortality and 1.85 (95% CI 1.03-3.29, p = 0.038) for 30-day in-hospital mortality. These findings were replicated in the WCH validation cohort. This study identified and validated two distinct AKI subphenotypes through EASIX trajectory analysis, demonstrating significant heterogeneity in clinical characteristics, laboratory findings, comorbidities, and outcomes between these groups. Future research may focus on early subphenotype prediction, differential treatment responses, and molecular mechanisms driving inter-group variation.

摘要

急性肾损伤(AKI)是一种复杂的病症,其特征是具有不同的亚表型,临床表现和预后各不相同。对这些亚表型进行分类可能有助于研究队列的标准化和治疗策略的优化。内皮激活和应激指数(EASIX)可量化血栓性微血管病的严重程度,这是AKI的一个病理生理特征。因此,我们利用EASIX轨迹分析来识别AKI亚表型。从eICU协作研究数据库中识别出AKI患者,以建立基于组的轨迹模型。将最初7个ICU住院日期间记录的EASIX评分用于轨迹建模。根据最佳模型将患者分层为不同的亚组。使用LASSO回归进行变量选择,然后进行多变量Cox回归分析,以计算所识别亚组的风险比(HR)。一个独立的验证队列包括来自华西医院(WCH)中心ICU的患者。该研究的主要终点包括所识别亚表型的ICU全因死亡率和院内死亡率。最终分析纳入了来自eICU数据库的317例患者和来自WCH的58例患者。基于前7个ICU住院日得出的EASIX轨迹,我们识别出两种不同的亚表型:“持续高值”(SH)组和“下降”(D)组。与D组相比,SH组的死亡风险显著更高,ICU死亡率的HR为2.26(95%CI 1.14 - 4.26,p = 0.018),30天院内死亡率的HR为1.85(95%CI 1.03 - 3.29,p = 0.038)。这些发现也在WCH验证队列中得到了验证。本研究通过EASIX轨迹分析识别并验证了两种不同的AKI亚表型,表明这些组在临床特征实验室检查结果、合并症和结局方面存在显著异质性。未来的研究可聚焦于早期亚表型预测、不同的治疗反应以及驱动组间差异的分子机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验