Suppr超能文献

基于贝叶斯优化长短期记忆网络的配电网净负荷预测故障恢复策略

Fault Recovery Strategy with Net Load Forecasting Using Bayesian Optimized LSTM for Distribution Networks.

作者信息

Ding Zekai, Chu Yundi

机构信息

College of Artificial Intelligence and Automation, Hohai University, Nanjing 210024, China.

出版信息

Entropy (Basel). 2025 Aug 22;27(9):888. doi: 10.3390/e27090888.

Abstract

To address the impact of distributed energy resource volatility on distribution network fault restoration, this paper proposes a strategy that incorporates net load forecasting. A Bayesian-optimized long short-term memory neural network is used to accurately predict the net load within fault-affected areas, achieving an R of 0.9569 and an RMSE of 12.15 kW. Based on the forecasting results, a fast restoration optimization model is established, with objectives to maximize critical load recovery, minimize switching operations, and reduce network losses. The model is solved using a genetic algorithm enhanced with quantum particle swarm optimization (GA-QPSO), a hybrid metaheuristic known for its superior global exploration and local refinement capabilities. GA-QPSO has been successfully applied in various power system optimization problems, including service restoration, network reconfiguration, and distributed generation planning, owing to its effectiveness in navigating large, complex solution spaces. Simulation results on the IEEE 33-bus system show that the proposed method reduces network losses by 33.2%, extends the power supply duration from 60 to 120 min, and improves load recovery from 72.7% to 75.8%, demonstrating enhanced accuracy and efficiency of the restoration process.

摘要

为了应对分布式能源资源波动性对配电网故障恢复的影响,本文提出了一种纳入净负荷预测的策略。采用贝叶斯优化的长短期记忆神经网络来准确预测故障影响区域内的净负荷,相关系数达到0.9569,均方根误差为12.15千瓦。基于预测结果,建立了快速恢复优化模型,目标是最大化关键负荷恢复、最小化开关操作并降低网络损耗。该模型采用量子粒子群优化增强的遗传算法(GA-QPSO)求解,GA-QPSO是一种混合元启发式算法,以其卓越的全局探索和局部细化能力而闻名。由于GA-QPSO在处理大型复杂解空间方面的有效性,它已成功应用于各种电力系统优化问题,包括服务恢复、网络重构和分布式发电规划。在IEEE 33节点系统上的仿真结果表明,所提方法使网络损耗降低了33.2%,将供电持续时间从60分钟延长至120分钟,并将负荷恢复率从72.7%提高到75.8%,证明了恢复过程的准确性和效率得到了提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验