Chen Wenjing, Liu Lang, Gao Rong
Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Hubei University of Technology, Wuhan 430068, China.
School of Computer Science, Hubei University of Technology, Wuhan 430068, China.
Entropy (Basel). 2025 Sep 15;27(9):959. doi: 10.3390/e27090959.
With rapid advancements in transformers, the reconstruction of hyperspectral images from RGB images, also known as spectral super-resolution (SSR), has made significant breakthroughs. However, existing transformer-based methods often struggle to balance computational efficiency with long-range receptive fields. Recently, Mamba has demonstrated linear complexity in modeling long-range dependencies and shown broad applicability in vision tasks. This paper proposes a multi-scale spectral-spatial sequence learning method, named MSS-Mamba, for reconstructing hyperspectral images from RGB images. First, we introduce a continuous spectral-spatial scan (CS3) mechanism to improve cross-dimensional feature extraction of the foundational Mamba model. Second, we propose a sequence tokenization strategy that generates multi-scale-aware sequences to overcome Mamba's limitations in hierarchically learning multi-scale information. Specifically, we design the multi-scale information fusion (MIF) module, which tokenizes input sequences before feeding them into Mamba. The MIF employs a dual-branch architecture to process global and local information separately, dynamically fusing features through an adaptive router that generates weighting coefficients. This produces feature maps that contain both global contextual information and local details, ultimately reconstructing a high-fidelity hyperspectral image. Experimental results on the ARAD_1k, CAVE and grss_dfc_2018 dataset demonstrate the performance of MSS-Mamba.
随着变压器技术的快速发展,从RGB图像重建高光谱图像,即光谱超分辨率(SSR),已经取得了重大突破。然而,现有的基于变压器的方法往往难以在计算效率和长距离感受野之间取得平衡。最近,曼巴(Mamba)在对长距离依赖关系进行建模时展现出线性复杂度,并在视觉任务中显示出广泛的适用性。本文提出了一种用于从RGB图像重建高光谱图像的多尺度光谱-空间序列学习方法,名为MSS-Mamba。首先,我们引入了一种连续光谱-空间扫描(CS3)机制,以改进基础曼巴模型的跨维度特征提取。其次,我们提出了一种序列令牌化策略,生成多尺度感知序列,以克服曼巴在分层学习多尺度信息方面的局限性。具体来说,我们设计了多尺度信息融合(MIF)模块,该模块在将输入序列输入曼巴之前对其进行令牌化。MIF采用双分支架构分别处理全局和局部信息,通过生成加权系数的自适应路由器动态融合特征。这产生了包含全局上下文信息和局部细节的特征图,最终重建出高保真的高光谱图像。在ARAD_1k、CAVE和grss_dfc_2018数据集上的实验结果证明了MSS-Mamba的性能。