IEEE Trans Neural Netw Learn Syst. 2023 Feb;34(2):623-634. doi: 10.1109/TNNLS.2021.3098767. Epub 2023 Feb 3.
A largely ignored fact in spectral super-resolution (SSR) is that the subsistent mapping methods neglect the auxiliary prior of camera spectral sensitivity (CSS) and only pay attention to wider or deeper network framework design while ignoring to excavate the spatial and spectral dependencies among intermediate layers, hence constraining representational capability of convolutional neural networks (CNNs). To conquer these drawbacks, we propose a novel deep hybrid 2-D-3-D CNN based on dual second-order attention with CSS prior (HSACS), which can excavate sufficient spatial-spectral context information. Specifically, dual second-order attention embedded in the residual block for more powerful spatial-spectral feature representation and relation learning is composed of a brand new trainable 2-D second-order channel attention (SCA) or 3-D second-order band attention (SBA) and a structure tensor attention (STA). Concretely, the band and channel attention modules are developed to adaptively recalibrate the band-wise and interchannel features via employing second-order band or channel feature statistics for more discriminative representations. Besides, the STA is promoted to rebuild the significant high-frequency spatial details for enough spatial feature extraction. Moreover, the CSS is first employed as a superior prior to avoid its effect of SSR quality, on the strength of which the resolved RGB can be calculated naturally through the super-reconstructed hyperspectral image (HSI); then, the final loss consists of the discrepancies of RGB and the HSI as a finer constraint. Experimental results demonstrate the superiority and progressiveness of the presented approach in terms of quantitative metrics and visual effect over SOTA SSR methods.
光谱超分辨率 (SSR) 中一个很大程度上被忽视的事实是,现有的映射方法忽略了相机光谱灵敏度 (CSS) 的辅助先验,只关注更宽或更深的网络框架设计,而忽略了挖掘中间层之间的空间和光谱依赖性,从而限制了卷积神经网络 (CNNs) 的表示能力。为了克服这些缺点,我们提出了一种基于带 CSS 先验的双二阶注意的新型深度混合 2D-3D CNN(HSACS),它可以挖掘足够的空间-光谱上下文信息。具体来说,嵌入在残差块中的双二阶注意用于更强大的空间-光谱特征表示和关系学习,由一个全新的可训练的 2D 二阶通道注意 (SCA) 或 3D 二阶带注意 (SBA) 和结构张量注意 (STA) 组成。具体来说,通过利用二阶带或通道特征统计来自适应地重新校准带和通道特征,带和通道注意模块被开发用于自适应地重新校准带和通道特征,以获得更具辨别力的表示。此外,STA 被提升为重建重要的高频空间细节,以进行足够的空间特征提取。此外,CSS 首先被用作一个优越的先验,以避免其对 SSR 质量的影响,根据这一点,通过超重建的高光谱图像 (HSI) 可以自然地计算出解析的 RGB;然后,最终的损失由 RGB 和 HSI 的差异组成,作为更精细的约束。实验结果表明,所提出的方法在定量指标和视觉效果方面优于 SOTA SSR 方法。