Suppr超能文献

论宇宙动力学与量子行为之间的耦合:一个多尺度热力学框架

On the Coupling Between Cosmological Dynamics and Quantum Behavior: A Multiscale Thermodynamic Framework.

作者信息

Warkentin Andreas

机构信息

Institute of Mechanics, University of Kassel, 34125 Kassel, Germany.

出版信息

Entropy (Basel). 2025 Sep 18;27(9):976. doi: 10.3390/e27090976.

Abstract

A multiscale thermodynamic model is considered, in which cosmological dynamics enforce persistent non-equilibrium conditions through recursive energy exchange across hierarchically ordered subsystems. The internal energy of each subsystem is recursively determined by energetic interactions with its subcomponents, forming a nested hierarchy extending up to cosmological scales. The total energy of the universe is assumed to be constant, imposing global consistency conditions on local dynamics. On the quantum scale, subsystems remain thermodynamically constrained in their accessible state space due to the unresolved energetic embedding imposed by higher-order couplings. As a result, quantum behavior is interpreted as an effective projection of unresolved thermodynamic interactions. In this view, the wave function serves as a mathematical representation of a subsystem's thermodynamic embedding, summarizing the unresolved energetic couplings with its environment, as shaped by recursive interactions across cosmological and microscopic scales. Phenomena such as zero-point energy and vacuum fluctuations are thereby understood as residual effects of structural energy constraints. Classical mechanics arises as a limiting case under full energetic resolution, while the quantum formalism reflects thermodynamic incompleteness. This formulation bridges statistical mechanics and quantum theory without metaphysical assumptions. It remains fully compatible with standard formalism, offering a thermodynamic interpretation based solely on energy conservation and hierarchical organization. All effects arise from scale-dependent resolution, not from violations of established physics.

摘要

我们考虑一个多尺度热力学模型,其中宇宙动力学通过跨层次有序子系统的递归能量交换来维持持续的非平衡条件。每个子系统的内能通过与其子组件的能量相互作用递归确定,形成一个嵌套层次结构,一直延伸到宇宙学尺度。假设宇宙的总能量是恒定的,这对局部动力学施加了全局一致性条件。在量子尺度上,由于高阶耦合所施加的未解决的能量嵌入,子系统在其可及状态空间中仍受到热力学约束。因此,量子行为被解释为未解决的热力学相互作用的有效投影。按照这种观点,波函数作为子系统热力学嵌入的数学表示,总结了与其环境未解决的能量耦合,这种耦合是由跨宇宙学和微观尺度的递归相互作用形成的。诸如零点能量和真空涨落等现象因此被理解为结构能量约束的残余效应。经典力学在完全能量分辨率下作为一种极限情况出现,而量子形式体系反映了热力学的不完备性。这种表述在没有形而上学假设的情况下架起了统计力学和量子理论之间的桥梁。它与标准形式体系完全兼容,仅基于能量守恒和层次组织提供一种热力学解释。所有效应都源于与尺度相关的分辨率,而不是源于对既定物理学的违反。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验