Suppr超能文献

阿曼患者1型和2型糖尿病准确鉴别中的自身抗体谱分析:一项回顾性研究

Autoantibody Profiling for Accurate Differentiation of Type 1 and Type 2 Diabetes Mellitus in Omani Patients: A Retrospective Study.

作者信息

Al-Okla Souad, Al Maqbali Salima, Al Mutori Hamdi, Al-Hinai Amna Mohammed, Al Bloushi Rayyan Hassan, Aljabri Mallak Ahmed, Alsenani Haya Nasser, Al Shafaee Mohammad

机构信息

College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman.

Department of Biology, Faculty of Sciences, Damascus University, Damascus P.O. Box 30621, Syria.

出版信息

Diagnostics (Basel). 2025 Sep 10;15(18):2296. doi: 10.3390/diagnostics15182296.

Abstract

Differentiating Type 1 from Type 2 diabetes mellitus (T1DM vs. T2DM) remains clinically challenging, especially in early-onset cases with overlapping features. This study assessed the diagnostic utility of diabetes-related autoantibodies in an Omani cohort and evaluated their predictive performance using machine learning. Clinical and laboratory data from 448 patients (aged ≥ 2 years) in Al Batinah North, Oman, were retrospectively analyzed. We assessed autoantibody positivity (anti-GAD, anti-islet, anti-TPO, anti-tissue), age, sex, and HbA1c. Receiver operating characteristic (ROC) curves and a neural network model were used to evaluate diagnostic accuracy. Anti-GAD and anti-islet antibodies were significantly more prevalent in T1DM (69.0% and 64.1%) than T2DM (7.4% and 3.8%; < 0.0001). HbA1c was elevated in both subtypes but lacked discriminatory specificity. Nearly half (48.5%) of T1DM patients showed multiple antibody positivity, especially in younger age groups. Anti-TPO and anti-tissue antibodies were more frequently detected in T1DM, suggesting broader autoimmunity. ROC analysis showed strong predictive value for anti-islet (AUC = 0.835) and anti-GAD (AUC = 0.827). Neural network modeling identified anti-GAD, anti-islet, and age as the most informative predictors, achieving over 92% classification accuracy. Importantly, antibody positivity in a subset of insulin-treated T2DM patients suggested potential latent autoimmune diabetes (LADA) misclassification. This is the first study in Oman to combine autoantibody screening with AI-based modeling to refine diabetes classification. Our findings highlight the value of immunological profiling in early diagnosis, uncover possible misclassification, and support AI integration to guide individualized management.

摘要

区分1型糖尿病和2型糖尿病(T1DM与T2DM)在临床上仍然具有挑战性,尤其是在具有重叠特征的早发病例中。本研究评估了阿曼队列中糖尿病相关自身抗体的诊断效用,并使用机器学习评估了它们的预测性能。对阿曼北巴提奈地区448名年龄≥2岁患者的临床和实验室数据进行了回顾性分析。我们评估了自身抗体阳性情况(抗谷氨酸脱羧酶抗体、抗胰岛抗体、抗甲状腺过氧化物酶抗体、抗组织抗体)、年龄、性别和糖化血红蛋白(HbA1c)。采用受试者工作特征(ROC)曲线和神经网络模型评估诊断准确性。抗谷氨酸脱羧酶抗体和抗胰岛抗体在T1DM患者中的流行率(分别为69.0%和64.1%)显著高于T2DM患者(分别为7.4%和3.8%;P<0.0001)。两种亚型的HbA1c均升高,但缺乏鉴别特异性。近一半(48.5%)的T1DM患者表现出多种抗体阳性,尤其是在较年轻的年龄组中。抗甲状腺过氧化物酶抗体和抗组织抗体在T1DM患者中更常被检测到,提示存在更广泛的自身免疫。ROC分析显示抗胰岛抗体(AUC = 0.835)和抗谷氨酸脱羧酶抗体(AUC = 0.827)具有很强的预测价值。神经网络建模确定抗谷氨酸脱羧酶抗体、抗胰岛抗体和年龄是最具信息价值的预测因素,分类准确率超过92%。重要的是,一部分接受胰岛素治疗的T2DM患者出现抗体阳性,提示可能存在潜在的成人隐匿性自身免疫性糖尿病(LADA)误诊。这是阿曼第一项将自身抗体筛查与基于人工智能的建模相结合以优化糖尿病分类的研究。我们的研究结果突出了免疫分析在早期诊断中的价值,揭示了可能的误诊情况,并支持将人工智能整合到糖尿病管理中以指导个体化治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验