Xiang Mi, Yang Mengling, Zhang Lijuan, Ouyang Xiaohu, Sarapultsev Alexey, Luo Shanshan, Hu Desheng
Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia.
Antioxidants (Basel). 2025 Sep 21;14(9):1138. doi: 10.3390/antiox14091138.
Cardiovascular diseases hinge on a vicious, self-amplifying cycle in which mitochondrial deoxyribonucleic acid (mtDNA) dysfunction undermines cardiac bioenergetics and unleashes sterile inflammation. The heart's reliance on oxidative phosphorylation (OXPHOS) makes it exquisitely sensitive to mtDNA insults-mutations, oxidative lesions, copy-number shifts, or aberrant methylation-that impair ATP production, elevate reactive oxygen species (ROS), and further damage the mitochondrial genome. Damaged mtDNA fragments then escape into the cytosol, where they aberrantly engage cGAS-STING, TLR9, and NLRP3 pathways, driving cytokine storms, pyroptosis, and tissue injury. We propose that this cycle represents an almost unifying pathogenic mechanism in a spectrum of mtDNA-driven cardiovascular disorders. In this review, we aim to synthesize the pathophysiological roles of mtDNA in this cycle and its implications for cardiovascular diseases. Furthermore, we seek to evaluate preclinical and clinical strategies aimed at interrupting this cycle-bolstering mtDNA repair and copy-number maintenance, reversing pathogenic methylation, and blocking mtDNA-triggered innate immune activation-and discuss critical gaps that must be bridged to translate these approaches into precision mitochondrial genome medicine for cardiovascular disease.
心血管疾病取决于一个恶性循环且自我放大的过程,其中线粒体脱氧核糖核酸(mtDNA)功能障碍会破坏心脏生物能量学并引发无菌性炎症。心脏对氧化磷酸化(OXPHOS)的依赖使其对mtDNA损伤(如突变、氧化损伤、拷贝数变化或异常甲基化)极为敏感,这些损伤会损害ATP生成、提高活性氧(ROS)水平,并进一步损伤线粒体基因组。受损的mtDNA片段随后逃逸到细胞质中,在那里它们异常激活cGAS-STING、TLR9和NLRP3通路,引发细胞因子风暴、细胞焦亡和组织损伤。我们认为,这个循环代表了一系列由mtDNA驱动的心血管疾病中几乎统一的致病机制。在这篇综述中,我们旨在综合mtDNA在此循环中的病理生理作用及其对心血管疾病的影响。此外,我们试图评估旨在中断这个循环的临床前和临床策略——加强mtDNA修复和拷贝数维持、逆转致病性甲基化以及阻断mtDNA触发的先天性免疫激活——并讨论为将这些方法转化为心血管疾病的精准线粒体基因组医学必须填补的关键空白。