Suppr超能文献

伴有心血管并发症的新冠后综合征(PASC)患者存在持续性单核细胞生物能量损伤和线粒体DNA损伤。

Persistent Monocytic Bioenergetic Impairment and Mitochondrial DNA Damage in PASC Patients with Cardiovascular Complications.

作者信息

Semo Dilvin, Shomanova Zornitsa, Sindermann Jürgen, Mohr Michael, Evers Georg, Motloch Lukas J, Reinecke Holger, Godfrey Rinesh, Pistulli Rudin

机构信息

Vascular Signalling, Molecular Cardiology, Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany.

Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany.

出版信息

Int J Mol Sci. 2025 May 9;26(10):4562. doi: 10.3390/ijms26104562.

Abstract

Cardiovascular complications are a hallmark of Post-Acute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC), yet the mechanisms driving persistent cardiac dysfunction remain poorly understood. Emerging evidence implicates mitochondrial dysfunction in immune cells as a key contributor. This study investigated whether CD14 monocytes from long COVID patients exhibit bioenergetic impairment, mitochondrial DNA (mtDNA) damage, and defective oxidative stress adaptation, which may underlie cardiovascular symptoms in PASC. CD14 monocytes were isolated from 14 long COVID patients with cardiovascular symptoms (e.g., dyspnea, angina) and 10 age-matched controls with similar cardiovascular risk profiles. Mitochondrial function was assessed using a Seahorse Agilent Analyzer under basal conditions and after oxidative stress induction with buthionine sulfoximine (BSO). Mitochondrial membrane potential was measured via Tetramethylrhodamine Ethyl Ester (TMRE) assay, mtDNA integrity via qPCR, and reactive oxygen species (ROS) dynamics via Fluorescence-Activated Cell Sorting (FACS). Parallel experiments exposed healthy monocytes to SARS-CoV-2 spike protein to evaluate direct viral effects. CD14 monocytes from long COVID patients with cardiovascular symptoms ( = 14) exhibited profound mitochondrial dysfunction compared to age-matched controls ( = 10). Under oxidative stress induced by buthionine sulfoximine (BSO), long COVID monocytes failed to upregulate basal respiration (9.5 vs. 30.4 pmol/min in controls, = 0.0043), showed a 65% reduction in maximal respiration ( = 0.4035, ns) and demonstrated a 70% loss of spare respiratory capacity ( = 0.4143, ns) with significantly impaired adaptation to BSO challenge (long COVID + BSO: 9.9 vs. control + BSO: 54 pmol/min, = 0.0091). Proton leak, a protective mechanism against ROS overproduction, was blunted in long COVID monocytes (3-fold vs. 13-fold elevation in controls, = 0.0294). Paradoxically, long COVID monocytes showed reduced ROS accumulation after BSO treatment (6% decrease vs. 1.2-fold increase in controls, = 0.0015) and elevated mitochondrial membrane potential (157 vs. 113.7 TMRE fluorescence, = 0.0179), which remained stable under oxidative stress. mtDNA analysis revealed severe depletion (80% reduction, < 0.001) and region-specific damage, with 75% and 70% reductions in amplification efficiency for regions C and D ( < 0.05), respectively. In contrast, exposure of healthy monocytes to SARS-CoV-2 spike protein did not recapitulate these defects, with preserved basal respiration, ATP production, and spare respiratory capacity, though coupling efficiency under oxidative stress was reduced ( < 0.05). These findings suggest that mitochondrial dysfunction in long COVID syndrome arises from maladaptive host responses rather than direct viral toxicity, characterized by bioenergetic failure, impaired stress adaptation, and mitochondrial genomic instability. This study identifies persistent mitochondrial dysfunction in long COVID monocytes as a critical driver of cardiovascular complications in PASC. Key defects-bioenergetic failure, impaired stress adaptation and mtDNA damage-correlate with clinical symptoms like heart failure and exercise intolerance. The stable elevation of mitochondrial membrane potential and resistance to ROS induction suggest maladaptive remodeling of mitochondrial physiology. These findings position mitochondrial resilience as a therapeutic target, with potential strategies including antioxidants, mtDNA repair agents or metabolic modulators. The dissociation between spike protein exposure and mitochondrial dysfunction highlights the need to explore host-directed mechanisms in PASC pathophysiology. This work advances our understanding of long COVID cardiovascular sequelae and provides a foundation for biomarker development and targeted interventions to mitigate long-term morbidity.

摘要

心血管并发症是严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染后急性后遗症(PASC)的一个标志,但导致持续性心脏功能障碍的机制仍知之甚少。新出现的证据表明免疫细胞中的线粒体功能障碍是一个关键因素。本研究调查了长期新冠患者的CD14单核细胞是否表现出生物能量受损、线粒体DNA(mtDNA)损伤以及氧化应激适应缺陷,这些可能是PASC中心血管症状的潜在原因。从14名有心血管症状(如呼吸困难、心绞痛)的长期新冠患者和10名年龄匹配、心血管风险特征相似的对照中分离出CD14单核细胞。在基础条件下以及用丁硫氨酸亚砜胺(BSO)诱导氧化应激后,使用海马安捷伦分析仪评估线粒体功能。通过四甲基罗丹明乙酯(TMRE)测定法测量线粒体膜电位,通过qPCR测定mtDNA完整性,通过荧光激活细胞分选(FACS)测定活性氧(ROS)动态。平行实验将健康单核细胞暴露于SARS-CoV-2刺突蛋白以评估直接的病毒效应。与年龄匹配的对照(n = 10)相比,有心血管症状的长期新冠患者(n = 14)的CD14单核细胞表现出严重的线粒体功能障碍。在丁硫氨酸亚砜胺(BSO)诱导的氧化应激下,长期新冠单核细胞未能上调基础呼吸(对照组为30.4皮摩尔/分钟,长期新冠组为9.5皮摩尔/分钟,P = 0.0043),最大呼吸降低了65%(P = 0.4035,无统计学意义),备用呼吸能力丧失了70%(P = 0.4143,无统计学意义),对BSO挑战的适应性明显受损(长期新冠 + BSO组:9.9皮摩尔/分钟,对照组 + BSO组:54皮摩尔/分钟,P = 0.0091)。质子泄漏是一种防止ROS过度产生的保护机制,在长期新冠单核细胞中受到抑制(对照组升高13倍,长期新冠组升高3倍,P = 0.0294)。矛盾的是,长期新冠单核细胞在BSO处理后ROS积累减少(对照组增加1.2倍,长期新冠组减少6%,P = 0.0015),线粒体膜电位升高(TMRE荧光:长期新冠组为157,对照组为113.7,P = 0.0179),在氧化应激下保持稳定。mtDNA分析显示严重耗竭(减少80%,P < 0.001)和区域特异性损伤区域C和D的扩增效率分别降低了75%和70%(P < 0.05)。相比之下,将健康单核细胞暴露于SARS-CoV-2刺突蛋白并未重现这些缺陷,基础呼吸、ATP产生和备用呼吸能力得以保留,尽管氧化应激下的偶联效率降低(P < 0.05)。这些发现表明,长期新冠综合征中的线粒体功能障碍源于适应性不良的宿主反应而非直接的病毒毒性,其特征为生物能量衰竭、应激适应受损和线粒体基因组不稳定。本研究确定长期新冠单核细胞中持续的线粒体功能障碍是PASC中心血管并发症的关键驱动因素。关键缺陷——生物能量衰竭、应激适应受损和mtDNA损伤——与心力衰竭和运动不耐受等临床症状相关。线粒体膜电位持续升高和对ROS诱导的抵抗表明线粒体生理发生了适应性不良的重塑。这些发现将线粒体弹性定位为一个治疗靶点,潜在策略包括抗氧化剂、mtDNA修复剂或代谢调节剂。刺突蛋白暴露与线粒体功能障碍之间的分离凸显了在PASC病理生理学中探索宿主导向机制的必要性。这项工作推进了我们对长期新冠心血管后遗症的理解,并为生物标志物开发和有针对性的干预措施提供了基础,以减轻长期发病率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验