Suppr超能文献

分段访谈:将初始自由回忆主题划分为多个片段以加强信息收集和谎言检测

The Segmented Interview: Partitioning the Initial Free Recall Topics into Segments to Enhance Information Gathering and Lie Detection.

作者信息

Deeb Haneen, Vrij Aldert, Severino Mark, Leal Sharon

机构信息

School of Psychology, Sport and Health Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK.

Los Angeles Police Department (Ret.), Los Angeles, CA 90012, USA.

出版信息

Behav Sci (Basel). 2025 Aug 26;15(9):1163. doi: 10.3390/bs15091163.

Abstract

In standard investigative interviews, follow-up questioning from a free recall is typically based on the core topics of the free recall that are relevant to the event under investigation. We suggest the Segmented Interview as an alternative in which each free recall topic is partitioned into segments, and focused questioning occurs for each topic and segment separately, regardless of their relevance to the event under investigation. We expected the focused questioning of the Segmented Interview to elicit more details and Veracity cues than a Structured Interview. All participants ( = 80) completed three activities, of which only the second was different: Truth tellers visited a store, whereas lie tellers stole an envelope with money. Participants were then interviewed and provided a free recall, followed by open questions based on the Segmented or Structured Interview protocol. The Segmented Interview elicited more information and Veracity cues than the Structured Interview. These results suggest that the Segmented Interview may be a promising interview technique for eliciting information and detecting lies.

摘要

在标准的调查性访谈中,自由回忆后的跟进提问通常基于自由回忆中与所调查事件相关的核心主题。我们建议采用分段访谈作为一种替代方法,即将每个自由回忆主题划分为多个片段,并针对每个主题和片段分别进行有针对性的提问,而不考虑它们与所调查事件的相关性。我们预计,与结构化访谈相比,分段访谈中的针对性提问能引出更多细节和真实性线索。所有参与者(n = 80)完成了三项活动,其中只有第二项活动有所不同:说实话者去了一家商店,而说谎者偷了一个装有钱的信封。然后对参与者进行访谈,并让他们进行自由回忆,随后根据分段或结构化访谈协议提出开放性问题。与结构化访谈相比,分段访谈引出了更多信息和真实性线索。这些结果表明,分段访谈可能是一种很有前景的访谈技术,可用于获取信息和检测谎言。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验