Vu Giang-Huong, Kim Cuk-Seong
Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
Int J Mol Sci. 2025 Sep 17;26(18):9037. doi: 10.3390/ijms26189037.
Hydrogen sulfide (HS), nitric oxide (NO), and carbon monoxide (CO) are now recognized as key gasotranmitters that regulate vascular function, contributing to vasodilation, angiogenesis, inflammation control, and oxidative balance. Initially regarded as toxic gases, they are produced on demand by specific enzymes, including cystathionine γ-lyase (CSE), endothelial nitric oxide synthase (eNOS), and heme oxygenase-1 (HO-1). Their activity is tightly controlled by redox-sensitive pathways. Reactive oxygen species (ROS), particularly superoxide and hydrogen peroxide, modulate gasotransmitter biosynthesis at the transcriptional and post-translational levels. Moreover, ROS affect gasotransmitter availability through oxidative modifications, including thiol persulfidation, nitrosative signaling, and carbonylation. This redox regulation ensures a tightly coordinated response to environmental and metabolic cues within the vascular system. This review synthesizes the current understanding of redox-gasotransmitter interactions, highlighting how ROS modulate the vascular roles of HS, NO, and CO. Understanding these interactions provides critical insights into the pathogenesis of cardiovascular diseases and offers potential redox-targeted therapies.
硫化氢(HS)、一氧化氮(NO)和一氧化碳(CO)现在被认为是调节血管功能的关键气体信号分子,有助于血管舒张、血管生成、炎症控制和氧化平衡。它们最初被视为有毒气体,由特定的酶按需产生,包括胱硫醚γ-裂解酶(CSE)、内皮型一氧化氮合酶(eNOS)和血红素加氧酶-1(HO-1)。它们的活性受到氧化还原敏感途径的严格控制。活性氧(ROS),特别是超氧化物和过氧化氢,在转录和翻译后水平调节气体信号分子的生物合成。此外,ROS通过氧化修饰影响气体信号分子的可用性,包括硫醇过硫化、亚硝化信号传导和羰基化。这种氧化还原调节确保了对血管系统内环境和代谢信号的紧密协调反应。本综述综合了目前对氧化还原-气体信号分子相互作用的理解,强调了ROS如何调节HS、NO和CO的血管作用。了解这些相互作用为心血管疾病的发病机制提供了关键见解,并提供了潜在的氧化还原靶向治疗方法。