Bencsik Norbert, Kimsanaliev Daniel, Tárnok Krisztián, Schlett Katalin
Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.
Int J Mol Sci. 2025 Sep 17;26(18):9068. doi: 10.3390/ijms26189068.
Liquid-liquid phase separation (LLPS) in cell biology has revolutionized our understanding of how cells organize biochemical reactions and structures through dynamic, membraneless organelles (MLOs). In neurons, LLPS-driven processes are particularly important for regulating synaptic plasticity, RNA metabolism, and responses to environmental stressors. Over the past decade, LLPS has gained increasing attention in neurobiology as a framework to interpret altered synaptic functions in various neurodevelopmental disorders (NDDs). These diseases comprise a diverse spectrum of clinical and pathological symptoms (e.g., global developmental delay, impaired cognitive and mental functions, as well as social withdrawal). Recent studies have highlighted how mutations in proteins containing intrinsically disordered regions (IDRs)-key drivers of LLPS-can alter condensate properties, resulting in persistent or defective MLO formation. These aberrant assemblies may disrupt RNA transport, splicing, and translation in developing neurons, thereby contributing to disorder pathology. IDRs are known to be enriched in membraneless components, such as stress granules, nuclear paraspeckles, and P-bodies, where they play crucial role in the formation, maintenance, and function of protein-RNA networks. This review explores the role of stress-induced MLOs in the nervous system, the molecular principles governing their formation, and how their dysfunction bridges the gap between environmental stress responses and neurodevelopmental impairment.
细胞生物学中的液-液相分离(LLPS)彻底改变了我们对细胞如何通过动态无膜细胞器(MLO)组织生化反应和结构的理解。在神经元中,由LLPS驱动的过程对于调节突触可塑性、RNA代谢以及对环境应激源的反应尤为重要。在过去十年中,LLPS作为一种解释各种神经发育障碍(NDD)中突触功能改变的框架,在神经生物学中受到越来越多的关注。这些疾病包括各种各样的临床和病理症状(例如,全面发育迟缓、认知和心理功能受损以及社交退缩)。最近的研究强调了含有内在无序区域(IDR)的蛋白质(LLPS的关键驱动因素)中的突变如何改变凝聚物特性,导致持续性或有缺陷的MLO形成。这些异常组装可能会破坏发育中神经元的RNA运输、剪接和翻译,从而导致疾病病理。已知IDR在无膜成分中富集,如应激颗粒、核旁斑和P小体,它们在蛋白质-RNA网络的形成、维持和功能中发挥着关键作用。本综述探讨了应激诱导的MLO在神经系统中的作用、其形成的分子原理,以及其功能障碍如何在环境应激反应和神经发育障碍之间架起桥梁。