Valencia-Lozano Eliana, Barraza Aarón, Ibarra Jorge, Délano-Frier John P, Martínez-Gallardo Norma A, Gámez-Escobedo Idalia Analí, Cabrera-Ponce José Luis
Laboratorio de Investigación Interdisciplinaria, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León de los Aldama 37684, Guanajuato, Mexico.
CONACYT-Centro de Investigaciones Biológicas del Noreste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico.
Int J Mol Sci. 2025 Sep 21;26(18):9224. doi: 10.3390/ijms26189224.
Coffee L. depends on abundantly distributed rainfall, and drought negatively impacts plant development, fruit production, bean quality, and, ultimately, beverage quality. Plant biotechnology by means of genetic manipulation and plant regeneration by the somatic embryogenic process is an alternative technology to overcome these problems. In the present work, we used the molecular approach of the gene silencing to allow trehalose accumulation favoring plants surviving in extreme drought/salt environments. We used a cassette containing the antisense L. gene under the RD29 promoter from and the NOS terminator to genetically modify an embryogenic coffee L. cv Typica line under osmotic stress supplemented with mannitol (0.3 M) and sorbitol (0.3 M). Osmotic stress-tolerant somatic embryos lines were recovered and regenerated into plants. Tolerant somatic embryo lines showed a higher rate of competence to induce secondary SE capacity and plants robustness. These lines showed a down-regulation of the ; accumulation of trehalose, sucrose, starch, and proline; higher photosynthetic rate; improved water-use efficiency; and appropriated vapor deficit pressure under soil conditions. A transcriptome analysis was performed from highly competent somatic embryogenic lines to understand the molecular mechanisms underlying osmotic-stress tolerance. From the up-regulated genes, a PPI network made by STRING v12.0 with high confidence (0.700) revealed the presence of the 10 modules: the cell cycle, chromatin remodeling, somatic embryogenesis, oxidative stress, generic transcription pathway, carbon metabolism, phenylpropanoid biosynthesis, trehalose biosynthesis, proline biosynthesis, and glycerolipid metabolism.
咖啡依赖于大量分布的降雨,干旱会对植物发育、果实产量、咖啡豆品质以及最终的饮品质量产生负面影响。通过基因操纵和体细胞胚胎发生过程进行植物再生的植物生物技术是克服这些问题的一种替代技术。在本研究中,我们采用基因沉默的分子方法,使海藻糖积累,从而有利于植物在极端干旱/盐环境中存活。我们使用了一个含有来自拟南芥RD29启动子下的反义基因和NOS终止子的盒式结构,对在添加甘露醇(0.3M)和山梨醇(0.3M)的渗透胁迫下的咖啡胚性cv Typica品系进行基因改造。获得了耐渗透胁迫的体细胞胚系并将其再生为植株。耐渗透胁迫的体细胞胚系表现出更高的诱导次生体细胞胚能力和植株健壮性。这些品系显示出基因的下调;海藻糖、蔗糖、淀粉和脯氨酸的积累;更高的光合速率;提高的水分利用效率;以及在土壤条件下合适的水汽亏缺压力。对高度胜任的体细胞胚性系进行了转录组分析,以了解渗透胁迫耐受性的分子机制。从上调基因中,由STRING v12.0构建的具有高可信度(0.700)的蛋白质-蛋白质相互作用网络揭示了10个模块的存在:细胞周期、染色质重塑、体细胞胚胎发生、氧化应激、通用转录途径、碳代谢、苯丙烷生物合成、海藻糖生物合成、脯氨酸生物合成和甘油脂代谢。