Suppr超能文献

基于应力松弛实验数据的粘弹性材料松弛时间和频谱模型的与采样时间无关的识别

On Sampling-Times-Independent Identification of Relaxation Time and Frequency Spectra Models of Viscoelastic Materials Using Stress Relaxation Experiment Data.

作者信息

Stankiewicz Anna, Juściński Sławomir, Błażewicz-Woźniak Marzena

机构信息

Department of Technology Fundamentals, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland.

Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland.

出版信息

Materials (Basel). 2025 Sep 21;18(18):4403. doi: 10.3390/ma18184403.

Abstract

Viscoelastic relaxation time and frequency spectra are useful for describing, analyzing, comparing, and improving the mechanical properties of materials. The spectra are typically obtained using the stress or oscillatory shear measurements. Over the last 80 years, dozens of mathematical models and algorithms were proposed to identify relaxation spectra models using different analytical and numerical tools. Some models and identification algorithms are intended for specific materials, while others are general and can be applied for an arbitrary rheological material. The identified relaxation spectrum model always depends on the identification method applied and on the specific measurements used in the identification process. The stress relaxation experiment data consist of the sampling times used in the experiment and the noise-corrupted relaxation modulus measurements. The aim of this paper is to build a model of the spectrum that asymptotically does not depend on the sampling times used in the experiment as the number of measurements tends to infinity. Broad model classes, determined by a finite series of various basis functions, are assumed for the relaxation spectra approximation. Both orthogonal series expansions based on the Legendre, Laguerre, and Chebyshev functions and non-orthogonal basis functions, like power exponential and modified Bessel functions of the second kind, are considered. It is proved that, even when the true spectrum description is entirely unfamiliar, the approximate sampling-times-independent spectra optimal models can be determined using modulus measurements for appropriately randomly selected sampling times. The recovered spectra models are strongly consistent estimates of the desirable models corresponding to the relaxation modulus models, being optimal for the deterministic integral weighted square error. A complete identification algorithm leading to the relaxation spectra models is presented that requires solving a sequence of weighted least-squares relaxation modulus approximation problems and a random selection of the sampling times. The problems of relaxation spectra identification are ill-posed; solution stability is ensured by applying Tikhonov regularization. Stochastic convergence analysis is conducted and the convergence with an exponential rate is demonstrated. Simulation studies are presented for the Kohlrausch-Williams-Watts spectrum with short relaxation times, the uni- and double-mode Gauss-like spectra with intermediate relaxation times, and the Baumgaertel-Schausberger-Winter spectrum with long relaxation times. Models using spectrum expansions on different basis series are applied. These studies have shown that sampling times randomization provides the sequence of the optimal spectra models that asymptotically converge to sampling-times-independent models. The noise robustness of the identified model was shown both by analytical analysis and numerical studies.

摘要

粘弹性弛豫时间和频谱对于描述、分析、比较和改善材料的力学性能很有用。频谱通常通过应力或振荡剪切测量获得。在过去的80年里,人们提出了几十种数学模型和算法,使用不同的分析和数值工具来识别弛豫谱模型。一些模型和识别算法适用于特定材料,而其他的则具有通用性,可应用于任意流变材料。所识别的弛豫谱模型总是取决于所应用的识别方法以及识别过程中使用的特定测量。应力松弛实验数据由实验中使用的采样时间和受噪声干扰的松弛模量测量值组成。本文的目的是构建一个频谱模型,当测量次数趋于无穷大时,该模型渐近地不依赖于实验中使用的采样时间。对于弛豫谱近似,假设由有限系列的各种基函数确定的广泛模型类别。考虑了基于勒让德、拉盖尔和切比雪夫函数的正交级数展开以及非正交基函数,如幂指数函数和第二类修正贝塞尔函数。证明了,即使真实的频谱描述完全不熟悉,也可以使用适当随机选择的采样时间的模量测量来确定近似与采样时间无关的频谱最优模型。恢复的频谱模型是对应于弛豫模量模型的理想模型的强一致估计,对于确定性积分加权平方误差是最优的。提出了一种完整的导致弛豫谱模型的识别算法,该算法需要解决一系列加权最小二乘弛豫模量近似问题并随机选择采样时间。弛豫谱识别问题是不适定的;通过应用蒂霍诺夫正则化来确保解的稳定性。进行了随机收敛分析,并证明了指数速率的收敛性。针对具有短弛豫时间的科尔劳施 - 威廉姆斯 - 瓦茨谱、具有中间弛豫时间的单模和双模高斯型谱以及具有长弛豫时间的鲍姆加特尔 - 绍斯伯格 - 温特谱进行了模拟研究。应用了在不同基系列上进行频谱展开的模型。这些研究表明,采样时间随机化提供了渐近收敛到与采样时间无关的模型的最优频谱模型序列。通过解析分析和数值研究都表明了所识别模型的噪声鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验