Suppr超能文献

利用传感器数据和机器学习预测虚拟现实(VR)会话期间的同理心及其他心理状态。

Predicting Empathy and Other Mental States During VR Sessions Using Sensor Data and Machine Learning.

作者信息

Kizhevska Emilija, Gjoreski Hristijan, Luštrek Mitja

机构信息

Institut "Jožef Stefan", 1000 Ljubljana, Slovenia.

Jožef Stefan International Postgraduate School (IPS), 1000 Ljubljana, Slovenia.

出版信息

Sensors (Basel). 2025 Sep 16;25(18):5766. doi: 10.3390/s25185766.

Abstract

Virtual reality (VR) is often regarded as the "ultimate empathy machine" because of its ability to immerse users in alternative perspectives and environments beyond physical reality. In this study, 105 participants (average age 22.43 ± 5.31 years, range 19-45, 75% female) with diverse educational and professional backgrounds experienced three-dimensional 360° VR videos featuring actors expressing different emotions. Despite the availability of established methodologies in both research and clinical domains, there remains a lack of a universally accepted "gold standard" for empathy assessment. The primary objective was to explore the relationship between the empathy levels of the participants and the changes in their physiological responses. Empathy levels were self-reported using questionnaires, while physiological attributes were recorded through various sensors. The main outcomes of the study are machine learning (ML) models capable of predicting state empathy levels and trait empathy scores during VR video exposure. The Random Forest (RF) regressor achieved the best performance for trait empathy prediction, with a mean absolute percentage error (MAPE) of 9.1%, and a standard error of the mean (SEM) of 0.32% across folds. For classifying state empathy, the RF classifier achieved the highest balanced accuracy of 67%, and a standard error of the proportion (SE) of 1.90% across folds. This study contributes to empathy research by introducing an objective and efficient method for predicting empathy levels using physiological signals, demonstrating the potential of ML models to complement self-reports. Moreover, by providing a novel dataset of VR empathy-eliciting videos, the work offers valuable resources for future research and clinical applications. Additionally, predictive models were developed to detect non-empathic arousal (78% balanced accuracy ± 0.63% SE) and to distinguish empathic vs. non-empathic arousal (79% balanced accuracy ± 0.41% SE). Furthermore, statistical tests explored the influence of narrative context, as well as empathy differences toward different genders and emotions. We also make available a set of carefully designed and recorded VR videos specifically created to evoke empathy while minimizing biases and subjective perspectives.

摘要

虚拟现实(VR)常被视为“终极共情机器”,因为它能够让用户沉浸于超越物理现实的不同视角和环境中。在本研究中,105名具有不同教育和专业背景的参与者(平均年龄22.43±5.31岁,年龄范围19 - 45岁,75%为女性)观看了三维360°VR视频,视频中演员表达了不同的情绪。尽管在研究和临床领域都有既定的方法,但共情评估仍缺乏一个普遍接受的“金标准”。主要目的是探讨参与者的共情水平与其生理反应变化之间的关系。共情水平通过问卷进行自我报告,而生理属性则通过各种传感器进行记录。该研究的主要成果是机器学习(ML)模型,能够预测VR视频曝光期间的状态共情水平和特质共情分数。随机森林(RF)回归器在特质共情预测方面表现最佳,平均绝对百分比误差(MAPE)为9.1%,各折的平均标准误差(SEM)为0.32%。对于状态共情分类,RF分类器实现了最高的平衡准确率67%,各折的比例标准误差(SE)为1.90%。本研究通过引入一种利用生理信号预测共情水平的客观有效方法,为共情研究做出了贡献,证明了ML模型补充自我报告的潜力。此外,通过提供一个新颖的VR共情诱发视频数据集,该研究为未来的研究和临床应用提供了宝贵资源。此外,还开发了预测模型来检测非共情唤醒(平衡准确率78%±0.63% SE)以及区分共情与非共情唤醒(平衡准确率79%±0.41% SE)。此外,统计测试探讨了叙事背景的影响,以及对不同性别和情绪的共情差异。我们还提供了一组精心设计和录制的VR视频,专门用于诱发共情,同时尽量减少偏差和主观视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验