Suppr超能文献

基于威胁检测目的,利用智能手表的光电容积脉搏波信号进行情绪识别。

Emotion Recognition Using PPG Signals of Smartwatch on Purpose of Threat Detection.

作者信息

Hwang Gyuwon, Yoo Sohee, Yoo Jaehyun

机构信息

School of AI Convergence, Sungshin Women's University, 34 da-gil 2, Bomun-ro, Seongbuk-gu, Seoul 02844, Republic of Korea.

出版信息

Sensors (Basel). 2024 Dec 24;25(1):18. doi: 10.3390/s25010018.

Abstract

This paper proposes a machine learning approach to detect threats using short-term PPG (photoplethysmogram) signals from a commercial smartwatch. In supervised learning, having accurately annotated training data is essential. However, a key challenge in the threat detection problem is the uncertainty regarding how accurately data labeled as 'threat' reflect actual threat responses since participants may react differently to the same experiments. In this paper, Gaussian Mixture Models are learned to remove ambiguously labeled training, and those models are also used to remove ambiguous test data. For the realistic test scenario, PPG measurements are collected from participants playing a horror VR (Virtual Reality) game, and the proposed method validates the superiority of our proposed approach in comparison with other methods. Also, the proposed filtering with GMM improves prediction accuracy by 23% compared to the method that does not incorporate the filtering.

摘要

本文提出了一种机器学习方法,利用来自商用智能手表的短期光电容积脉搏波信号(PPG)来检测威胁。在监督学习中,拥有准确标注的训练数据至关重要。然而,威胁检测问题中的一个关键挑战是,被标记为“威胁”的数据在多大程度上准确反映实际威胁反应存在不确定性,因为参与者对相同实验的反应可能不同。本文通过学习高斯混合模型来去除标注模糊的训练数据,这些模型还用于去除模糊的测试数据。对于实际测试场景,从玩恐怖虚拟现实(VR)游戏的参与者那里收集PPG测量数据,与其他方法相比,所提出的方法验证了我们所提方法的优越性。此外,与未采用滤波的方法相比,所提出的高斯混合模型滤波使预测准确率提高了23%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f10/11723353/a43bed972224/sensors-25-00018-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验