Suppr超能文献

Multifaceted dynamics of circadian timing system influence aging and longevity.

作者信息

Jagota Anita, Khan Zeeshan Akhtar, Sharma Sushree Abhidhatri

机构信息

Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.

出版信息

Biogerontology. 2025 Sep 27;26(5):184. doi: 10.1007/s10522-025-10324-w.

Abstract

Circadian time keeping system (CTS) consisting of network of central and peripheral clocks regulates physiological, metabolic, and behavioural processes in alignment with the 24 hour. Desynchrony between central and peripheral clocks contributes to the pathogenesis of age-related conditions such as metabolic syndrome, cognitive decline, immune dysfunction, and neurodegenerative diseases etc. Sex-specific susceptibilities further modulate circadian resilience, with hormonal changes and redox imbalances playing key roles in the aging trajectory. Immune senescence and hormonal dampening, particularly in cortisol and melatonin rhythms, exacerbate circadian misalignment, accelerating systemic decline with aging. Interestingly, aging and clock dysfunction is a bidirectional process, i.e. aging progressively influences circadian rhythms across multiple levels and vice versa, from the molecular architecture of core clock gene feedback loops to the functionality of the central pacemaker-the suprachiasmatic nucleus (SCN)-and its coordination with peripheral oscillators. This review critically highlights the complex alterations in circadian mechanisms associated with aging, including diminished transcriptional rhythmicity, epigenetic drift, mitochondrial desynchronization, and disruptions in neurotransmitter systems. Such changes in turn leads to weakened SCN output, impaired photic entrainment, and loss of temporal coherence across organ systems. Further, this review demonstrates CTS and aging at multiple levels such as behavioural, physiological, biochemical and molecular levels are linked in push-pull mechanism i.e., the breakdown in the harmony of circadian rhythms at systemic level pushes the organism towards early aging and aging in turn is linked to CTS disorders.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验