Crespo Manuel Tomás, Trebucq Laura Lucía, Senna Camila Agustina, Hokama Guido, Paladino Natalia, Agostino Patricia Verónica, Chiesa Juan José
ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina.
Laboratorio Interdisciplinario del Tiempo (LITERA), Universidad de San Andrés, Buenos Aires, Argentina.
Biomed J. 2025 Jan 3;48(3):100827. doi: 10.1016/j.bj.2025.100827.
The circadian system is composed by a central hypothalamic clock at the suprachiasmatic nuclei (SCN) that communicates with peripheral circadian oscillators for daily coordination of behavior and physiology. The SCN entrain to the environmental 24-h light-dark (LD) cycle and drive daily rhythms of internal synchronizers such as core body temperature, hypothalamic-hypophysary hormones, sympathetic/parasympathetic activity, as well as behavioral and feeding-fasting rhythms, which supply signals setting core molecular clocks at central and peripheral tissues. Steady phase relationships between the SCN and peripheral oscillators keep homeostatic processes such as microbiota/microbiome composition/activity, metabolic supply/demand, energy balance, immunoinflammatory process, sleep amount and quality, psychophysiological stress, etc. Indeed, the risk of health alterations increase when these phase relationships are chronically changed prompting circadian disruption (CD), as occurring after sudden LD cycle changes (so-called jet-lag), or due to changes of activity/feeding-rest/fasting rhythm with respect to LD cycles (as humans subjected to nightwork, or restricting food access at rest in mice). Typical pathologies observed in animal models of CD and epidemiological studies include metabolic syndrome, type-2 diabetes, obesity, chronic inflammation, cancer, sleep disruption, decrease in physical and cognitive performance, and mood, among others. The present review discusses different aspects of such physiological dysregulations observed in animal models of CD having altered feeding-fasting rhythms, with potential translation to human health.
昼夜节律系统由位于视交叉上核(SCN)的中枢下丘脑时钟组成,该时钟与外周昼夜节律振荡器进行通信,以实现行为和生理的日常协调。SCN与环境24小时明暗(LD)周期同步,并驱动内部同步器的每日节律,如核心体温、下丘脑 - 垂体激素、交感/副交感神经活动,以及行为和进食 - 禁食节律,这些节律提供信号来设定中枢和外周组织中的核心分子时钟。SCN与外周振荡器之间稳定的相位关系维持着诸如微生物群/微生物组组成/活性、代谢供应/需求、能量平衡、免疫炎症过程、睡眠量和质量、心理生理应激等稳态过程。事实上,当这些相位关系长期改变导致昼夜节律紊乱(CD)时,健康改变的风险就会增加,如突然的LD周期变化(所谓的时差反应)后发生的情况,或由于活动/进食 - 休息/禁食节律相对于LD周期的变化(如从事夜班工作的人,或在小鼠休息时限制食物摄入)。在CD动物模型和流行病学研究中观察到的典型病理包括代谢综合征、2型糖尿病、肥胖、慢性炎症、癌症、睡眠障碍、身体和认知能力下降以及情绪等。本综述讨论了在具有改变的进食 - 禁食节律的CD动物模型中观察到的这种生理失调的不同方面,以及对人类健康的潜在转化。