Zheng Xiaolin, Miao Xiaofei, Yang Zijie, Luo Zhaoyan, Yu Jun, Li Huiqi, Zhang Lei
College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P.R. China
College of Biomedical Engineering, Shenzhen University Shenzhen 518060 P.R. China.
Chem Sci. 2025 Sep 18. doi: 10.1039/d5sc04431f.
Developing acidic oxygen evolution reaction (OER) catalysts with low noble metal loading and high activity remains a critical challenge for advancing proton exchange membrane water electrolyzers. Herein, we report structurally engineered Mn Ru O catalysts confined on carbon nanotubes (CNTs), enabling highly dispersed active sites and remarkable catalytic activity at low Ru content. The uniform nanoscale coating of Mn Ru O along CNT sidewalls promotes Mn-O-Ru interfacial bonding and establishes an electron-bridge for enhanced charge transfer. The optimized CNT-(MnRu)O catalyst delivers a low overpotential of 120 mV at 10 mA cm and an exceptional mass activity of 5549 A g at 270 mV-252 times that of commercial RuO (22 A g ). Combined X-ray spectroscopy, Raman spectroscopy, and differential electrochemical mass spectrometry reveal that the electron-rich Ru centers stabilized by Mn-O bridges accelerate charge transfer and suppress Ru dissolution during the OER. Moreover, the CNT substrate and Ru incorporation synergistically generate abundant oxygen vacancies, significantly enhancing the catalytic activity through an improved lattice oxygen-mediated mechanism. This work highlights the critical role of CNT confinement and interfacial electronic modulation in decoupling noble metal usage from performance, offering a versatile design strategy for next-generation acidic OER catalysts.
开发具有低贵金属负载量和高活性的析氧反应(OER)催化剂仍然是推动质子交换膜水电解槽发展的一项关键挑战。在此,我们报道了一种结构工程化的负载在碳纳米管(CNT)上的Mn Ru O催化剂,其在低Ru含量下能实现高度分散的活性位点和显著的催化活性。Mn Ru O沿CNT侧壁的均匀纳米级涂层促进了Mn - O - Ru界面键合,并建立了一个用于增强电荷转移的电子桥。优化后的CNT-(MnRu)O催化剂在10 mA cm时具有120 mV的低过电位,在270 mV时具有5549 A g的优异质量活性——是商业RuO(22 A g)的252倍。结合X射线光谱、拉曼光谱和差分电化学质谱表明,由Mn - O桥稳定的富电子Ru中心加速了电荷转移并抑制了OER过程中的Ru溶解。此外,CNT基底和Ru的掺入协同产生了大量的氧空位,通过改进的晶格氧介导机制显著提高了催化活性。这项工作突出了CNT限域和界面电子调制在将贵金属使用与性能脱钩方面的关键作用,为下一代酸性OER催化剂提供了一种通用的设计策略。