Çambay Kuban Fatma, Pekmez Kadir
Graduate School of Science and Engineering, Nanotechnology and Nanomedicine Division, Hacettepe University Ankara Turkey.
Turkish Aerospace 06980 Ankara Turkey.
RSC Adv. 2025 Sep 25;15(42):35356-35367. doi: 10.1039/d5ra06413a. eCollection 2025 Sep 22.
Lithium titanium oxide (LTO) type materials for lithium-ion (Li-ion) batteries have become an alternative to the typically used graphitic-based materials as anode materials due to their better safety performance and longer life cycles. In the literature, LTO structures such as LiTiO, LiTiO and LiTiO/LiTiO composites with different Li/Ti ratios have been synthesized by solution and solid phase methods such as sol-gel, spray drying, spray pyrolysis and, ultrasonic spray pyrolysis at elevated temperatures using TiO and LiCO as starting materials, and their electrochemical performances have been tested. This study demonstrated that electrochemical deposition can directly deposit LTO anode electrode materials using TiOSO and TiO(ClO) precursor compounds in Propylene Carbonate (PC) solvent containing LiClO supporting electrolyte at room temperature. TiO(OH) and TiOOH, which are formed by the reactions of the unstable TiO ion formed by electrochemical reduction with TiO in solution and adsorbed on the electrode surface and the OH ion formed by the electroreduction of water, and TiO(OH) and TiOOH precipitated on the electrode surface, interact with the excessive amount of Li ions in solution to form lithium titanate. Since electrochemical reduction occurs between 2.4 V and 1.2 V, lithium can be incorporated during electrodeposition, resulting in the formation of various lithium titanate phases (LiTiO, LiTiO and LiTiO/LiTiO composite). Electrodeposited Lithium Titanate (ED-LTO) obtained in this way has been characterized using cyclic voltammetry, chronopotentiometry, EIS, XRD, XPS, Raman spectroscopy, and FESEM-EDX techniques. A full cell was fabricated using ED-LTO/LiFePO.
用于锂离子电池的锂钛氧化物(LTO)型材料,因其更好的安全性能和更长的循环寿命,已成为替代典型使用的石墨基材料作为负极材料的选择。在文献中,诸如LiTiO、LiTiO以及具有不同Li/Ti比的LiTiO/LiTiO复合材料等LTO结构,已通过溶液法和固相法合成,例如溶胶 - 凝胶法、喷雾干燥法、喷雾热解法以及在高温下使用TiO和LiCO作为起始原料的超声喷雾热解法,并对其电化学性能进行了测试。本研究表明,电化学沉积可在室温下,于含有LiClO支持电解质的碳酸丙烯酯(PC)溶剂中,使用TiOSO和TiO(ClO)前驱体化合物直接沉积LTO负极电极材料。由电化学还原形成的不稳定TiO离子与溶液中的TiO反应并吸附在电极表面而形成的TiO(OH)和TiOOH,以及电极表面沉淀的TiO(OH)和TiOOH,与溶液中过量的Li离子相互作用形成钛酸锂。由于电化学还原发生在2.4 V至1.2 V之间,锂可在电沉积过程中掺入,从而形成各种钛酸锂相(LiTiO、LiTiO和LiTiO/LiTiO复合材料)。通过这种方式获得的电沉积钛酸锂(ED - LTO)已使用循环伏安法、计时电位法、电化学阻抗谱(EIS)、X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱以及场发射扫描电子显微镜 - 能谱仪(FESEM - EDX)技术进行了表征。使用ED - LTO/LiFePO制备了一个全电池。