Suppr超能文献

用于半固态锂硫电池的锂-钛酸锂复合负极

Lithium-Lithium Titanate Composite Anode for Semi-Solid-State Lithium-Sulfur Batteries.

作者信息

Elsin Abraham Sona, Murugan Ramaswamy, Olakkil Veedu Sreejith

机构信息

High Energy Density Batteries Research Laboratory, Department of Physics, Pondicherry University, Puducherry 605014, India.

Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom.

出版信息

Langmuir. 2025 Sep 2. doi: 10.1021/acs.langmuir.5c02150.

Abstract

Lithium-sulfur batteries have attracted significant attention recently as sulfur is one of the most abundant elements in the earth's crust, low-cost, has a non-toxic nature, multi-electron transfer property coupled with its remarkable theoretical specific capacity of 1672 mAh g and energy density of 2600 Wh kg. However, lithium-deficient sulfur cathodes associated with lithium metal anodes together to face challenges, such as significant volume expansion during cycling, dendrite formation, and polysulfide shuttling effect from the sulfur cathodes, leading to corrosion, all of which negatively impact the cycle lifespan of the battery. On the other hand, moving away from liquid to solid-state garnet-based solid electrolytes is highly aided for lithium-sulfur batteries because of their high ionic conductivity of 10 S cm stability with lithium metal, lithium-based alloys and moreover in mitigating the polysulfide issues. The particular lithium-sulfur solid-state batteries still possess intense lithium metallic anode issues. Utilizing a composite anode constructively addresses the significant interfacial resistance arising from the solid-solid contact issues, making it an excellent solution for the interfacial issues and helps in minimizing the volume expansion of the lithium metal during the charge-discharge. Successful attempts have been made on associating the lithium metal with lithium titanate composite anodes, but its full potential can be expected with high-capacity cathodes, like sulfur, as such combinations have not yet been explored. Here a full cell study using a polyacrylonitrile sulfur (PANS) cathode with a lithium-lithium titanate (Li-LTO) composite anode was compared to a pure lithium-metal-based anode at 0.2 C for more than 150 cycles with an improved discharge capacity retention observed over these cycles for a Li-LTO composite-based cell, whereas the pure lithium-sulfur (Li-S) cell loses complete discharge capacity at around 100 cycles.

摘要

锂硫电池最近引起了广泛关注,因为硫是地壳中最丰富的元素之一,成本低,无毒,具有多电子转移特性,其理论比容量高达1672 mAh/g,能量密度为2600 Wh/kg。然而,与锂金属负极结合的贫锂硫正极面临诸多挑战,如循环过程中的显著体积膨胀、枝晶形成以及来自硫正极的多硫化物穿梭效应,导致腐蚀,所有这些都对电池的循环寿命产生负面影响。另一方面,转向基于石榴石的固态电解质对锂硫电池非常有利,因为它们具有10 S/cm的高离子电导率,与锂金属、锂基合金稳定,而且能减轻多硫化物问题。特定的锂硫固态电池仍然存在严重的锂金属负极问题。使用复合负极有效地解决了因固-固接触问题产生的显著界面电阻,使其成为解决界面问题的极佳方案,并有助于在充放电过程中最小化锂金属的体积膨胀。已成功尝试将锂金属与钛酸锂复合负极结合,但与高容量正极(如硫)结合时,其全部潜力仍有待挖掘,因为此类组合尚未得到探索。在此,对使用聚丙烯腈硫(PANS)正极和锂-钛酸锂(Li-LTO)复合负极的全电池进行了研究,并与纯锂金属负极在0.2 C下进行了超过150次循环的比较。基于Li-LTO复合负极的电池在这些循环中观察到放电容量保持率有所提高,而纯锂硫(Li-S)电池在约100次循环时完全失去放电容量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验