Niazi Sarfaraz K, Yang Jiaan
University of Illinois, Chicago, IL, USA.
Micro Biotech, Ltd., Shanghai, 200123, China.
Sci Rep. 2025 Sep 29;15(1):33498. doi: 10.1038/s41598-025-17022-0.
The emergence of artificial intelligence in protein structure prediction has significantly advanced our understanding of protein folding. Yet, challenges remain in accurately modeling intrinsically disordered proteins (IDPs) and capturing conformational diversity essential for drug discovery. FiveFold is a novel ensemble method that combines predictions from five complementary algorithms (AlphaFold2, RoseTTAFold, OmegaFold, ESMFold, and EMBER3D) to improve our understanding of protein conformational landscapes, representing a significant advancement in structural biology. This review examines current applications of the methodology, analyzes its unique advantages in modeling IDPs, and explores its expanding potential in drug discovery. To demonstrate the utility of this method, we conducted computational modeling of alpha-synuclein as a model IDP system, proving it can better capture conformational diversity than traditional single-structure methods. We discuss future applications in structure-based drug design, allosteric drug discovery, protein-protein interaction inhibitors, and precision medicine. The framework's ability to generate multiple plausible conformations through its Protein Folding Shape Code (PFSC) and Protein Folding Variation Matrix (PFVM) addresses critical limitations in current structure prediction methodologies, enabling novel therapeutic intervention strategies targeting previously "undruggable" proteins.
人工智能在蛋白质结构预测中的出现显著推动了我们对蛋白质折叠的理解。然而,在准确模拟内在无序蛋白质(IDP)以及捕捉药物发现所必需的构象多样性方面仍存在挑战。FiveFold是一种新颖的集成方法,它结合了来自五种互补算法(AlphaFold2、RoseTTAFold、OmegaFold、ESMFold和EMBER3D)的预测结果,以增进我们对蛋白质构象景观的理解,代表了结构生物学的一项重大进展。本综述考察了该方法的当前应用,分析了其在模拟IDP方面的独特优势,并探索了其在药物发现方面不断扩大的潜力。为了证明该方法的实用性,我们对α-突触核蛋白作为模型IDP系统进行了计算建模,证明它比传统的单结构方法能更好地捕捉构象多样性。我们讨论了其在基于结构的药物设计、变构药物发现、蛋白质-蛋白质相互作用抑制剂和精准医学方面的未来应用。该框架通过其蛋白质折叠形状代码(PFSC)和蛋白质折叠变异矩阵(PFVM)生成多个合理构象的能力解决了当前结构预测方法中的关键局限性,从而实现了针对以前“不可成药”蛋白质的新型治疗干预策略。