Suppr超能文献

五重折叠法在基于构象集合的蛋白质结构预测中的综合应用。

A comprehensive application of FiveFold for conformation ensemble-based protein structure prediction.

作者信息

Niazi Sarfaraz K, Yang Jiaan

机构信息

University of Illinois, Chicago, IL, USA.

Micro Biotech, Ltd., Shanghai, 200123, China.

出版信息

Sci Rep. 2025 Sep 29;15(1):33498. doi: 10.1038/s41598-025-17022-0.

Abstract

The emergence of artificial intelligence in protein structure prediction has significantly advanced our understanding of protein folding. Yet, challenges remain in accurately modeling intrinsically disordered proteins (IDPs) and capturing conformational diversity essential for drug discovery. FiveFold is a novel ensemble method that combines predictions from five complementary algorithms (AlphaFold2, RoseTTAFold, OmegaFold, ESMFold, and EMBER3D) to improve our understanding of protein conformational landscapes, representing a significant advancement in structural biology. This review examines current applications of the methodology, analyzes its unique advantages in modeling IDPs, and explores its expanding potential in drug discovery. To demonstrate the utility of this method, we conducted computational modeling of alpha-synuclein as a model IDP system, proving it can better capture conformational diversity than traditional single-structure methods. We discuss future applications in structure-based drug design, allosteric drug discovery, protein-protein interaction inhibitors, and precision medicine. The framework's ability to generate multiple plausible conformations through its Protein Folding Shape Code (PFSC) and Protein Folding Variation Matrix (PFVM) addresses critical limitations in current structure prediction methodologies, enabling novel therapeutic intervention strategies targeting previously "undruggable" proteins.

摘要

人工智能在蛋白质结构预测中的出现显著推动了我们对蛋白质折叠的理解。然而,在准确模拟内在无序蛋白质(IDP)以及捕捉药物发现所必需的构象多样性方面仍存在挑战。FiveFold是一种新颖的集成方法,它结合了来自五种互补算法(AlphaFold2、RoseTTAFold、OmegaFold、ESMFold和EMBER3D)的预测结果,以增进我们对蛋白质构象景观的理解,代表了结构生物学的一项重大进展。本综述考察了该方法的当前应用,分析了其在模拟IDP方面的独特优势,并探索了其在药物发现方面不断扩大的潜力。为了证明该方法的实用性,我们对α-突触核蛋白作为模型IDP系统进行了计算建模,证明它比传统的单结构方法能更好地捕捉构象多样性。我们讨论了其在基于结构的药物设计、变构药物发现、蛋白质-蛋白质相互作用抑制剂和精准医学方面的未来应用。该框架通过其蛋白质折叠形状代码(PFSC)和蛋白质折叠变异矩阵(PFVM)生成多个合理构象的能力解决了当前结构预测方法中的关键局限性,从而实现了针对以前“不可成药”蛋白质的新型治疗干预策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcd/12480659/7ce382ea347a/41598_2025_17022_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验