Fischman Sébastien, Viel Théo, Perrot Jean-Luc, Pérez-Anker Javiera, Suppa Mariano, Cinotti Elisa, Lenoir Clément, Orte Cano Carmen, Welzel Julia, Schuh Sandra, Sattler Elke Christina, Del Marmol Véronique, Rubegni Pietro, Dragotto Martina, Cioppa Vittoria, Falcinelli Francesca, Cappilli Simone, Challe Steven, Tavernier Clara, Malvehy Josep, Tognetti Linda
Damae Medical, Paris, France.
Department of Dermatology, University Hospital of Saint-Etienne, Saint-Etienne, France.
J Eur Acad Dermatol Venereol. 2025 Oct 19. doi: 10.1111/jdv.70099.
Basal cell carcinoma (BCC) is the most common skin cancer, requiring an early diagnosis and accurate margin definition to prevent functional and cosmetic complications. Traditional methods using clinical and dermoscopic images (C&D) often rely on biopsies and histology for final validation. Non-invasive techniques like LC-OCT, enabling 'digital biopsies', are promising alternatives, but remain underutilized due to the expertise required. The development of Artificial Intelligence (AI) algorithms is a promising approach to assist dermatologists in their diagnosis and support the broader adoption of such technologies.
We present a real-time AI assistant for BCC diagnosis with LC-OCT, which is, to date, the only real-time AI model across all dermatological imaging modalities. The study aims to quantify the model's effectiveness when used by dermatologists with different levels of expertise and compare its performance with traditional methods and unaided LC-OCT.
This multicenter, retrospective study involved 43 dermatologists in a double-rounded quiz on 200 equivocal BCC lesions. Diagnoses were first made on C&D images, then with LC-OCT or AI-assisted LC-OCT in a randomized manner.
AI-assisted LC-OCT significantly improves dermatologists' diagnostic performance in detecting BCC (+25.8 points in sensitivity and +16.8 points in specificity compared to C&D), particularly benefiting those with less LC-OCT experience, effectively bridging a 2-year gap of expertise. These results highlight the potential for broader clinical adoption through AI assistance and underscore its promise in reducing the need for invasive procedures and improving patient outcomes.
These results support a broader adoption of LC-OCT use in clinical practice thanks to AI assistance and underscore its promise in reducing the need for invasive procedures and improving patient outcomes.
基底细胞癌(BCC)是最常见的皮肤癌,需要早期诊断并准确界定切缘,以防止出现功能和美容方面的并发症。使用临床和皮肤镜图像(C&D)的传统方法通常依靠活检和组织学进行最终验证。像液相相干光断层扫描(LC-OCT)这样能够进行“数字活检”的非侵入性技术是很有前景的替代方法,但由于所需的专业知识,其应用仍然不足。人工智能(AI)算法的开发是一种很有前景的方法,可以帮助皮肤科医生进行诊断,并支持此类技术的更广泛应用。
我们展示了一种用于通过LC-OCT诊断BCC的实时AI助手,这是迄今为止所有皮肤科成像模式中唯一的实时AI模型。该研究旨在量化该模型在不同专业水平的皮肤科医生使用时的有效性,并将其性能与传统方法和无辅助的LC-OCT进行比较。
这项多中心回顾性研究让43名皮肤科医生对200个疑似BCC病变进行两轮测验。首先根据C&D图像进行诊断,然后以随机方式使用LC-OCT或AI辅助的LC-OCT进行诊断。
AI辅助的LC-OCT显著提高了皮肤科医生在检测BCC方面的诊断性能(与C&D相比,灵敏度提高了25.8分,特异性提高了16.8分),尤其使那些LC-OCT经验较少的医生受益,有效弥补了两年的专业知识差距。这些结果凸显了通过AI辅助实现更广泛临床应用的潜力,并强调了其在减少侵入性程序需求和改善患者预后方面的前景。
这些结果支持在AI辅助下在临床实践中更广泛地使用LC-OCT,并强调了其在减少侵入性程序需求和改善患者预后方面的前景。