Suppr超能文献

卷积神经网络模型观察者在虚拟数字乳腺断层合成体模搜索过程中会忽略类似信号的解剖结构。

Convolutional neural network model observers discount signal-like anatomical structures during search in virtual digital breast tomosynthesis phantoms.

作者信息

Jonnalagadda Aditya, Barufaldi Bruno B, Maidment Andrew D A, Weinstein Susan P, Abbey Craig K, Eckstein Miguel P

机构信息

University of California, Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States.

University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States.

出版信息

J Med Imaging (Bellingham). 2025 Sep;12(5):051809. doi: 10.1117/1.JMI.12.5.051809. Epub 2025 Oct 16.

Abstract

PURPOSE

We aim to assess the perceptual tasks in which convolutional neural networks (CNNs) might be better tools than commonly used linear model observers (LMOs) to evaluate medical image quality.

APPROACH

We compared the LMOs (channelized Hotelling [CHO] and frequency convolution channels observers [FCO]) and CNN detection accuracies for tasks with a few possible signal locations (location known exactly) and for the search for mass and microcalcification signals embedded in 2D/3D breast tomosynthesis phantoms. We also compared the LMOs and CNN accuracies to those of radiologists in the search tasks. We analyzed radiologists' eye position to assess whether they fixate longer at locations considered suspicious by the LMOs or those by the CNN.

RESULTS

LMOs resulted in similar detection accuracies [area under the receiver operating characteristic curve (AUC)] to the CNN for tasks with up to 100 signal locations but lower accuracies in the search task for microcalcification and mass 3D images. Radiologists' AUC was significantly higher ( ) than that of LMOs for the microcalcification 2D search (CHO, FCO) and 3D mass search ( , CHO) but was not higher than the CNN's AUC. For both signal types, radiologists fixated longer on the locations of the highest response scores of the CNN than those of the LMOs but only reached statistical significance for the mass (masses: versus CHO and versus FCO).

CONCLUSION

We show that CNNs are a more suitable model observer for search tasks. Like radiologists but not traditional LMOs, CNNs can discount false positives arising from anatomical backgrounds.

摘要

目的

我们旨在评估在哪些感知任务中,卷积神经网络(CNN)可能比常用的线性模型观察者(LMO)更适合作为评估医学图像质量的工具。

方法

我们比较了LMO(通道化霍特林[CHO]和频率卷积通道观察者[FCO])与CNN在具有少量可能信号位置(信号位置已知确切位置)的任务中的检测准确率,以及在二维/三维乳腺断层合成体模中搜索肿块和微钙化信号的检测准确率。我们还在搜索任务中将LMO和CNN的准确率与放射科医生的准确率进行了比较。我们分析了放射科医生的眼睛位置,以评估他们是否在LMO或CNN认为可疑的位置上注视时间更长。

结果

对于信号位置多达100个的任务,LMO的检测准确率[受试者操作特征曲线下面积(AUC)]与CNN相似,但在微钙化和肿块三维图像的搜索任务中准确率较低。在微钙化二维搜索(CHO、FCO)和三维肿块搜索( 、CHO)中,放射科医生的AUC显著高于LMO,但不高于CNN的AUC。对于这两种信号类型,放射科医生在CNN响应分数最高的位置上的注视时间比在LMO的位置上更长,但仅在肿块方面达到统计学显著性(肿块: 与CHO比较, 与FCO比较)。

结论

我们表明,CNN是搜索任务中更合适的模型观察者。与放射科医生一样,但与传统LMO不同,CNN可以减少解剖背景产生的假阳性。

相似文献

本文引用的文献

2
The Medical Segmentation Decathlon.医学分割十项全能
Nat Commun. 2022 Jul 15;13(1):4128. doi: 10.1038/s41467-022-30695-9.
5
Medical image quality metrics for foveated model observers.用于中心凹注视模型观察者的医学图像质量指标。
J Med Imaging (Bellingham). 2021 Jul;8(4):041209. doi: 10.1117/1.JMI.8.4.041209. Epub 2021 Aug 16.
8
Foveated Model Observers for Visual Search in 3D Medical Images.三维医学图像中视觉搜索的注视点模型观察者。
IEEE Trans Med Imaging. 2021 Mar;40(3):1021-1031. doi: 10.1109/TMI.2020.3044530. Epub 2021 Mar 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验