Suppr超能文献

用于生物医学研究的3D类器官和器官芯片系统的进展

Advances in 3D Organoids and Organ-on-a-Chip Systems for Biomedical Research.

作者信息

Sakthivel Vignesh, Dharshan Santhanam Sanjai, Namasivayam S Karthick Raja, Arockiaraj Jesu

机构信息

Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India.

Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India.

出版信息

J Biomed Mater Res A. 2026 Jan;114(1):e70028. doi: 10.1002/jbma.70028.

Abstract

Traditional 2D cell cultures and animal models have served as the foundations of biomedical research. These have significant limitations in modeling human physiology and predicting outcomes of therapy. Recent developments in 3D organoids and organ-on-chip technologies have shifted the field by enabling human relevant dynamic and scalable platforms for disease modeling and drug discovery and toxicity evaluation. Organoids derived from either stem cells or patient samples accurately recreate complex cellular structure and function found in human organs. The combination of organoids with organ-on-chip systems, or micro-engineered devices that closely simulate the interactions between distinct organ types including tissue to tissue as well as fluids and mechanical forces, allows researchers to continually monitor and manipulate the immediate environment of cells. The focus of this study will be on the underlying technologies for the manufacture and use of these systems as well as the main applications of these systems. Future research will include the development of multi-organ chips, artificial intelligence (AI), and biosensors. This study also illustrates how organoids and organ-on-chip technologies will enable the modeling and mimicking of common neurological, liver, gut, heart, cancer, and infectious diseases, as well as their application for high-throughput drug screening and nanotoxicology applications which could potentially help to lessen our reliance on animals for preclinical drug testing. The combined use of CRISPR gene editing, multi-omics profiling, and machine-learning technology is accelerating the transition to personalized medicine. In spite of issues surrounding the standards associated with the use of organoid and organ-on-chip technology, ethical issues, and the magnitude of scalability, there continues to be ongoing technical advances and government support for this quickly developing technology. Organoids and organ-on-chip technologies represent a fundamental shift in the practice of biomedical research and may allow us to more closely and accurately simulate authentic human physiology while providing more efficient and safer platform for drug discovery to be conducted.

摘要

传统的二维细胞培养和动物模型一直是生物医学研究的基础。这些在模拟人类生理学和预测治疗结果方面存在重大局限性。三维类器官和芯片器官技术的最新发展通过为疾病建模、药物发现和毒性评估提供与人类相关的动态且可扩展的平台,改变了该领域。源自干细胞或患者样本的类器官能够精确再现人体器官中发现的复杂细胞结构和功能。类器官与芯片器官系统(即紧密模拟不同器官类型之间相互作用的微工程设备,包括组织与组织之间以及流体与机械力之间的相互作用)相结合,使研究人员能够持续监测和操控细胞的直接环境。本研究的重点将是这些系统的制造和使用的基础技术以及这些系统的主要应用。未来的研究将包括多器官芯片、人工智能(AI)和生物传感器的开发。这项研究还说明了类器官和芯片器官技术将如何能够模拟和模仿常见的神经、肝脏、肠道、心脏、癌症和传染病,以及它们在高通量药物筛选和纳米毒理学应用中的应用,这可能有助于减少我们在临床前药物测试中对动物的依赖。CRISPR基因编辑、多组学分析和机器学习技术的联合使用正在加速向个性化医学的转变。尽管围绕类器官和芯片器官技术使用的标准、伦理问题以及可扩展性的程度存在问题,但这项快速发展的技术仍在不断取得技术进步并获得政府支持。类器官和芯片器官技术代表了生物医学研究实践的根本转变,可能使我们能够更紧密、准确地模拟真实的人类生理学,同时为药物发现提供更高效、更安全的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验