Suppr超能文献

黑腹果蝇中的α-甘油磷酸循环。IV. αGpdh-1“无效”突变的代谢、超微结构及适应性后果

The alpha-glycerophosphate cycle in Drosophila melanogaster. IV. Metabolic, ultrastructural, and adaptive consequences of alphaGpdh-l "null" mutations.

作者信息

O'Brien S J, Shimada Y

出版信息

J Cell Biol. 1974 Dec;63(3):864-82. doi: 10.1083/jcb.63.3.864.

Abstract

"Null" mutations previously isolated at the alphaGpdh-1 locus of Drosophila melanogaster, because of disruption of the energy-producing alpha-glycerophosphate cycle, severely restrict the flight ability and relative viability of affected individuals. Two "null" alleles, alphaGpdh-1(BO-1-4), and alphaGpdh-1(BO-1-5,) when made hemizygous with a deficiency of the alphaGpdh-1 locus, Df(2L)GdhA, were rendered homozygous by recombination with and selective elimination of the Df(2L)GdhA chromosome. After over 25 generations, a homozygous alphaGpdh-1(BO-1-4) stock regained the ability to fly despite the continued absence of measurable alphaGPDH activity. Inter se heterozygotes of three noncomplementing alphaGpdh-1 "null" alleles and the "adapted" alphaGpdh-1(BO-1-4) homozygotes were examined for metabolic enzymatic activities related to the energy-producing and pyridine nucleotide-regulating functions of the alpha-glycerophosphate cycle in Drosophila. The enzyme functions tested included glyceraldehyde-3-phosphate dehydrogenase, cytoplasmic and soluble malate dehydrogenase, lactate dehydrogenase, mitochondrial NADH oxidation, oxidative phosphorylation, and respiratory control with the substrates alpha-glycerophosphate, succinate, and pyruvate. These activities in any of the mutant genotypes in early adult life were indistinguishable from those in the wild type. There was, however, a premature deterioration and atrophy of the ultrastructural integrity of flight muscle sarcosomes observed by electron microscopy in the "null" mutants. These observations were correlated with a decrease in state 3 mitochondrial oxidation with alpha-glycerophosphate, succinate, and pyruvate, as well as with loss of respiratory control in adults as early as 2 wk after eclosion. Such observations, which normally are seen in aged dipterans, were accompanied by premature mortality of the mutant heterozygotes. The adapted alphaGpdh-1(BO-1-4) was identical with wild type in each of the aging characters with the single exception of lowered rates of mitochondrial oxidative phosphorylation.

摘要

先前在黑腹果蝇的αGpdh - 1基因座分离出的“无效”突变,由于产生能量的α - 甘油磷酸循环的破坏,严重限制了受影响个体的飞行能力和相对活力。两个“无效”等位基因,αGpdh - 1(BO - 1 - 4)和αGpdh - 1(BO - 1 - 5),当与αGpdh - 1基因座的缺失Df(2L)GdhA形成半合子时,通过与Df(2L)GdhA染色体的重组和选择性消除而纯合。超过25代后,纯合的αGpdh - 1(BO - 1 - 4)品系尽管仍然没有可测量的αGPDH活性,但恢复了飞行能力。检测了三个非互补的αGpdh - 1“无效”等位基因的相互杂合子以及“适应的”αGpdh - 1(BO - 1 - 4)纯合子中与果蝇α - 甘油磷酸循环的能量产生和吡啶核苷酸调节功能相关的代谢酶活性。所测试的酶功能包括甘油醛 - 3 - 磷酸脱氢酶、细胞质和可溶性苹果酸脱氢酶、乳酸脱氢酶、线粒体NADH氧化、氧化磷酸化以及以α - 甘油磷酸、琥珀酸和丙酮酸为底物的呼吸控制。在成年早期,任何突变基因型中的这些活性与野生型中的活性没有区别。然而,通过电子显微镜观察发现,“无效”突变体中飞行肌肌粒的超微结构完整性过早恶化和萎缩。这些观察结果与成年果蝇中以α - 甘油磷酸、琥珀酸和丙酮酸为底物的线粒体状态3氧化减少以及羽化后仅2周时呼吸控制丧失相关。这种通常在老龄双翅目中出现观察结果,伴随着突变杂合子的过早死亡。除了线粒体氧化磷酸化速率降低外,适应的αGpdh - 1(BO - 1 - 4)在每个衰老特征方面与野生型相同。

相似文献

2
The -glycerophosphate in Drosophila melanogaster. II. Genetic aspects.
Genetics. 1972 May;71(1):127-38. doi: 10.1093/genetics/71.1.127.
10
A genetic analysis of the alpha-glycerophosphate oxidase locus in Drosophila melanogaster.
Genetics. 1988 Nov;120(3):755-66. doi: 10.1093/genetics/120.3.755.

引用本文的文献

3
Triglyceride pools, flight and activity variation at the Gpdh locus in Drosophila melanogaster.
Genetics. 2006 Jan;172(1):293-304. doi: 10.1534/genetics.105.047035. Epub 2005 Oct 3.
4
Flight muscle function in Drosophila requires colocalization of glycolytic enzymes.
Mol Biol Cell. 1997 Sep;8(9):1665-75. doi: 10.1091/mbc.8.9.1665.
7
The characterization of alpha-glycerophosphate dehydrogenase mutants in Drosophila melanogaster.
Genetics. 1983 Oct;105(2):387-407. doi: 10.1093/genetics/105.2.387.
9
Structural characterization of the alpha-glycerol-3-phosphate dehydrogenase-encoding gene of Drosophila melanogaster.
Proc Natl Acad Sci U S A. 1989 Jul;86(13):5020-4. doi: 10.1073/pnas.86.13.5020.

本文引用的文献

4
Lactic and alpha-glycerophosphate dehydrogenases in insects.
J Gen Physiol. 1957 May 20;40(5):779-90. doi: 10.1085/jgp.40.5.779.
5
The respiratory chain and oxidative phosphorylation.
Adv Enzymol Relat Subj Biochem. 1956;17:65-134. doi: 10.1002/9780470122624.ch2.
6
Electrophoretic variants of alpha-glycerophosphate dehydrogenase in Drosophila melanogaster.
Science. 1967 Dec 8;158(3806):1319-20. doi: 10.1126/science.158.3806.1319.
7
Pyruvate oxidation and the permeability of mitochondria from blowfly flight muscle.
Science. 1966 Oct 14;154(3746):268-70. doi: 10.1126/science.154.3746.268.
8
The organization of flight muscle fibers in the Odonata.
J Cell Biol. 1966 Jan;28(1):109-26. doi: 10.1083/jcb.28.1.109.
9
Enzymatic properties of the inner and outer membranes of rat liver mitochondria.
J Cell Biol. 1968 Jul;38(1):158-75. doi: 10.1083/jcb.38.1.158.
10
Larval age and the pattern of DNA synthesis in polytene chromosomes.
Can J Genet Cytol. 1968 Mar;10(1):82-90. doi: 10.1139/g68-011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验