Xiao Qi, Penyazkov Gleb, Li Xiangliang, Huang Beichen, Bu Wenhao, Shi Juanlang, Shi Haoyu, Liao Tangyin, Yan Gaowei, Tian Haochen, Li Yixuan, Li Jiatong, Lu Bingkun, You Li, Lin Yige, Mo Yuxiang, Ding Shiqian
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China.
Beijing Academy of Quantum Information Sciences, Beijing, China.
Nature. 2026 Feb 11. doi: 10.1038/s41586-026-10107-4.
The exceptionally low-energy isomeric transition in Th at around 148.4 nm (refs. ) offers a unique opportunity for coherent nuclear control and the realization of a nuclear clock. Recent advances, most notably the incorporation of large ensembles of Th nuclei in transparent crystals and the development of pulsed vacuum ultraviolet (VUV) lasers, have enabled initial laser spectroscopy of this transition. However, the lack of an intense, narrow-linewidth VUV laser has precluded coherent nuclear manipulation. Here we introduce and report a continuous-wave (CW) laser at 148.4 nm, generated by means of four-wave mixing (FWM) in cadmium vapour. The source delivers more than 100 nW of power with a projected linewidth well below 100 Hz and supports broad wavelength tunability. This represents a five-orders-of-magnitude improvement in linewidth over all previous single-frequency lasers below 190 nm (refs. ). We develop a spatially resolved homodyne technique that places a stringent upper bound on FWM-induced phase noise, thereby supporting the feasibility of sub-hertz VUV linewidths. Our work addresses the central challenge towards a Th-based nuclear clock and establishes a widely tunable, ultranarrow-linewidth laser platform for potential applications across quantum information science, condensed-matter physics and high-resolution VUV spectroscopy.
钍在约148.4纳米处的异常低能量同质异能跃迁(参考文献)为相干核控制和实现核时钟提供了独特机会。最近的进展,最显著的是将大量钍核纳入透明晶体以及脉冲真空紫外(VUV)激光器的发展,使得对该跃迁进行初步激光光谱学研究成为可能。然而,缺乏高强度、窄线宽的VUV激光器阻碍了相干核操纵。在此,我们介绍并报告一种在148.4纳米处的连续波(CW)激光器,它是通过镉蒸气中的四波混频(FWM)产生的。该光源输出功率超过100纳瓦,预计线宽远低于100赫兹,并支持宽波长可调谐性。这比之前所有低于190纳米的单频激光器在线宽上有五个数量级的改善(参考文献)。我们开发了一种空间分辨零差技术,该技术对FWM诱导的相位噪声设定了严格的上限,从而支持亚赫兹VUV线宽的可行性。我们的工作解决了基于钍的核时钟面临的核心挑战,并建立了一个广泛可调谐、超窄线宽的激光平台,可用于量子信息科学、凝聚态物理和高分辨率VUV光谱学等潜在应用。