Isichenko Andrei, Hunter Andrew S, Bose Debapam, Chauhan Nitesh, Song Meiting, Liu Kaikai, Harrington Mark W, Blumenthal Daniel J
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
Present Address, Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA.
Sci Rep. 2024 Nov 18;14(1):27015. doi: 10.1038/s41598-024-76699-x.
Today's precision experiments for timekeeping, inertial sensing, and fundamental science place strict requirements on the spectral distribution of laser frequency noise. Rubidium-based experiments utilize table-top 780 nm laser systems for high-performance clocks, gravity sensors, and quantum gates. Wafer-scale integration of these lasers is critical for enabling systems-on-chip. Despite progress towards chip-scale 780 nm ultra-narrow linewidth lasers, achieving sub-Hz fundamental linewidth and sub-kHz integral linewidth has remained elusive. Here we report a hybrid integrated 780 nm self-injection locked laser with 0.74 Hz fundamental and 864 Hz integral linewidths and thermorefractive-noise-limited 100 Hz/Hz at 10 kHz. These linewidths are over an order of magnitude lower than previous photonic-integrated 780 nm implementations. The laser consists of a Fabry-Pérot diode edge-coupled to an on-chip splitter and a tunable 90 million Q resonator realized in the CMOS foundry-compatible silicon nitride platform. We achieve 2 mW output power, 36 dB side mode suppression ratio, and a 2.5 GHz mode-hop-free tuning range. To demonstrate the potential for quantum atomic applications, we analyze the laser noise influence on sensitivity limits for atomic clocks, quantum gates, and atom interferometer gravimeters. This technology can be translated to other atomic wavelengths, enabling compact, ultra-low noise lasers for quantum sensing, computing, and metrology.
如今,用于计时、惯性传感和基础科学的精密实验对激光频率噪声的光谱分布提出了严格要求。基于铷的实验利用桌面型780纳米激光系统来实现高性能时钟、重力传感器和量子门。这些激光器的晶圆级集成对于实现片上系统至关重要。尽管在芯片级780纳米超窄线宽激光器方面取得了进展,但实现亚赫兹的基模线宽和亚千赫兹的积分线宽仍然难以捉摸。在此,我们报告了一种混合集成的780纳米自注入锁定激光器,其基模线宽为0.74赫兹,积分线宽为864赫兹,在10千赫兹时热折射噪声限制为100赫兹/赫兹。这些线宽比以前的光子集成780纳米器件低一个数量级以上。该激光器由一个法布里 - 珀罗二极管与一个片上分束器边缘耦合而成,并在与CMOS铸造兼容的氮化硅平台上实现了一个可调谐的9000万品质因数谐振器。我们实现了2毫瓦的输出功率、36分贝的边模抑制比以及2.5吉赫兹的无模式跳变调谐范围。为了证明量子原子应用的潜力,我们分析了激光噪声对原子钟、量子门和原子干涉仪重力仪灵敏度极限的影响。这项技术可以转化到其他原子波长,从而实现用于量子传感、计算和计量的紧凑型超低噪声激光器。