Suppr超能文献

酶合成去阻遏中的调控过程。枯草芽孢杆菌的碱性磷酸酶。

The regulatory process in the de-repression of enzyme synthesis. Alkaline phosphatase of Bacillus subtilis.

作者信息

Moses V

出版信息

Biochem J. 1967 Jun;103(3):650-9. doi: 10.1042/bj1030650.

Abstract
  1. The kinetics of de-repression of alkaline phosphatase in Bacillus subtilis were studied after the removal of P(i). Enzyme activity appeared about 10min. after removal of P(i), whereas ;enzyme-forming potential' appeared after 6min. 2. Protein synthesis is not impaired for at least 20min. on removal of P(i), but RNA synthesis is considerably diminished. 3. Adding chloramphenicol to cells without P(i), just at the time they start to make enzyme-forming potential, does not affect the differential rate of enzyme synthesis compared with total protein. Enzyme-forming potential accumulates to about normal levels in the presence of chloramphenicol, even though peptide-bond formation is inhibited by more than 95%. 4. Similar experiments performed with actinomycin C show more complex effects. Actinomycin initially prevents RNA synthesis and also the synthesis of enzyme-forming potential. After some minutes RNA synthesis resumes at a low rate, to be followed 4min. later by enzyme synthesis. Enzyme-forming potential can accumulate in the presence of actinomycin after the resumption of RNA synthesis. Protein synthesis, initially inhibited by actinomycin as a consequence of the effect on RNA synthesis, is later directly inhibited by actinomycin. 5. Adding actinomycin to de-repressed cells already making enzyme stops enzyme synthesis within 4-5min. Enzyme synthesis resumes, as before, 4min. after the resumption of RNA synthesis. 6. Adding P(i) together with actinomycin to de-repressed cells synthesizing enzyme does not result in a lower yield of enzyme compared with actinomycin alone. 7. Actinomycin is less effective an inhibitor of RNA and protein synthesis in P(i)-starved cells if P(i) is also added. 8. These results are discussed in view of the three main models for the regulation of enzyme induction: regulation at the level of transcription only, at translation only, or a coupled model in which transcription requires concomitant translation. It is concluded that the present evidence most powerfully supports the model of transcriptional regulation.
摘要
  1. 去除无机磷(P(i))后,对枯草芽孢杆菌中碱性磷酸酶去阻遏的动力学进行了研究。去除P(i)后约10分钟出现酶活性,而“酶形成潜力”在6分钟后出现。2. 去除P(i)后至少20分钟内蛋白质合成未受损害,但RNA合成显著减少。3. 在细胞开始产生酶形成潜力时,向无P(i)的细胞中添加氯霉素,与总蛋白相比,并不影响酶合成的差异速率。即使肽键形成被抑制超过95%,在氯霉素存在下酶形成潜力仍积累至正常水平。4. 用放线菌素C进行的类似实验显示出更复杂的效应。放线菌素最初阻止RNA合成以及酶形成潜力的合成。几分钟后RNA合成以低速率恢复,4分钟后接着是酶合成。RNA合成恢复后,放线菌素存在时酶形成潜力可积累。由于对RNA合成的影响,蛋白质合成最初被放线菌素抑制,随后直接被放线菌素抑制。5. 向已经在合成酶的去阻遏细胞中添加放线菌素,4 - 5分钟内停止酶合成。如之前一样,RNA合成恢复4分钟后酶合成重新开始。6. 向正在合成酶的去阻遏细胞中同时添加P(i)和放线菌素,与单独使用放线菌素相比,酶的产量并未降低。7. 如果也添加P(i),放线菌素对P(i)饥饿细胞中RNA和蛋白质合成的抑制作用较小。8. 根据酶诱导调节的三种主要模型:仅在转录水平调节、仅在翻译水平调节或转录需要伴随翻译的耦合模型,对这些结果进行了讨论。得出的结论是,目前的证据最有力地支持转录调节模型。

相似文献

本文引用的文献

3
RNA AND PROTEIN SYNTHESIS REQUIRED FOR BACTERIAL SPORE FORMATION.细菌芽孢形成需要RNA和蛋白质合成。
Biochim Biophys Acta. 1964 Jun 22;87:267-76. doi: 10.1016/0926-6550(64)90222-1.
8
Thymine starvation and enzyme synthesis.胸腺嘧啶饥饿与酶合成
Biochim Biophys Acta. 1960 Dec 18;45:610-2. doi: 10.1016/0006-3002(60)91505-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验