Dawkins R, Krebs J R
Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):489-511. doi: 10.1098/rspb.1979.0081.
An adaptation in one lineage (e.g. predators) may change the selection pressure on another lineage (e.g. prey), giving rise to a counter-adaptation. If this occurs reciprocally, an unstable runaway escalation or 'arms race' may result. We discuss various factors which might give one side an advantage in an arms race. For example, a lineage under strong selection may out-evolve a weakly selected one (' the life-dinner principle'). We then classify arms races in two independent ways. They may be symmetric or asymmetric, and they may be interspecific or intraspecific. Our example of an asymmetric interspecific arms race is that between brood parasites and their hosts. The arms race concept may help to reduce the mystery of why cuckoo hosts are so good at detecting cuckoo eggs, but so bad at detecting cuckoo nestlings. The evolutionary contest between queen and worker ants over relative parental investment is a good example of an intraspecific asymmetric arms race. Such cases raise special problems because the participants share the same gene pool. Interspecific symmetric arms races are unlikely to be important, because competitors tend to diverge rather than escalate competitive adaptations. Intraspecific symmetric arms races, exemplified by adaptations for male-male competition, may underlie Cope's Rule and even the extinction of lineages. Finally we consider ways in which arms races can end. One lineage may drive the other to extinction; one may reach an optimum, thereby preventing the other from doing so; a particularly interesting possibility, exemplified by flower-bee coevolution, is that both sides may reach a mutual local optimum; lastly, arms races may have no stable and but may cycle continuously. We do not wish necessarily to suggest that all, or even most, evolutionary change results from arms races, but we do suggest that the arms race concept may help to resolve three long-standing questions in evolutionary theory.
一个谱系(如捕食者)中的适应性变化可能会改变另一个谱系(如猎物)所面临的选择压力,从而引发一种反适应。如果这种情况相互发生,可能会导致不稳定的失控升级或“军备竞赛”。我们讨论了在军备竞赛中可能使一方具有优势的各种因素。例如,处于强烈选择下的谱系可能比受弱选择的谱系进化得更快(“生死抉择原则”)。然后,我们以两种独立的方式对军备竞赛进行分类。它们可以是对称的或不对称的,也可以是种间的或种内的。我们举的一个不对称种间军备竞赛的例子是巢寄生鸟类与其宿主之间的军备竞赛。军备竞赛的概念可能有助于减少为什么杜鹃宿主在识别杜鹃蛋方面如此擅长,但在识别杜鹃雏鸟方面却如此糟糕的谜团。蚁后和工蚁在相对亲代投资上的进化竞争是种内不对称军备竞赛的一个很好的例子。这类情况会引发特殊的问题,因为参与者共享同一个基因库。种间对称军备竞赛不太可能很重要,因为竞争者往往会出现分化而不是不断升级竞争适应性。以雄性间竞争的适应性为例的种内对称军备竞赛,可能是科普法则甚至谱系灭绝的基础。最后,我们考虑军备竞赛可能结束的方式。一个谱系可能会使另一个谱系灭绝;一个谱系可能达到最优状态,从而阻止另一个谱系这样做;一个特别有趣的可能性,以花与蜜蜂的共同进化为例,是双方可能会达到一个共同的局部最优状态;最后,军备竞赛可能没有稳定的结局,而是可能持续循环。我们并不一定想说所有甚至大多数的进化变化都是由军备竞赛导致的,但我们确实认为军备竞赛的概念可能有助于解决进化理论中的三个长期存在的问题。