Suppr超能文献

铜绿假单胞菌自然群体中链霉素抗性的机制及范围

Mechanisms and spectrum of streptomycin resistance in a natural population of Pseudomonas aeruginosa.

作者信息

Tseng J T, Bryan L E, Van den Elzen H M

出版信息

Antimicrob Agents Chemother. 1972 Sep;2(3):136-41. doi: 10.1128/AAC.2.3.136.

Abstract

A survey of 200 strains of Pseudomonas aeruginosa isolated from clinical specimens was made in an attempt to correlate the spectrum of their streptomycin resistance and the mechanism of resistance. The strains can be classified into three groups, according to their level of resistance to streptomycin: susceptible, low-level resistant, and high-level resistant strains. The mechanism of resistance of high-level resistant strains is either an R factor-mediated inactivation of streptomycin by phosphorylation or streptomycin-resistant ribosomes. However, such high-level resistant strains comprised less than 10% of the total strains isolated; the majority of the strains resistant to streptomycin were of low-level resistance. The latter are associated with a diminished uptake of streptomycin, and no evidence of streptomycin inactivation, resistant ribosomes, or R factors could be detected. The most probable explanation of low-level resistance is reduced permeability to streptomycin. Modification of the growth medium used in uptake studies simultaneously affected strongly both streptomycin incorporation and the minimal inhibitory concentration of streptomycin.

摘要

对从临床标本中分离出的200株铜绿假单胞菌进行了一项调查,旨在关联其链霉素耐药谱与耐药机制。根据这些菌株对链霉素的耐药水平,可将它们分为三组:敏感菌株、低水平耐药菌株和高水平耐药菌株。高水平耐药菌株的耐药机制要么是R因子介导的通过磷酸化使链霉素失活,要么是存在链霉素抗性核糖体。然而,此类高水平耐药菌株占分离出的总菌株不到10%;大多数对链霉素耐药的菌株为低水平耐药。后者与链霉素摄取减少有关,未检测到链霉素失活、抗性核糖体或R因子的证据。低水平耐药最可能的解释是对链霉素的通透性降低。摄取研究中使用的生长培养基的改变同时强烈影响链霉素的掺入和链霉素的最低抑菌浓度。

相似文献

1
Mechanisms and spectrum of streptomycin resistance in a natural population of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 1972 Sep;2(3):136-41. doi: 10.1128/AAC.2.3.136.
2
Streptomycin accumulation in susceptible and resistant strains of Escherichia coli and Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 1976 Jun;9(6):928-38. doi: 10.1128/AAC.9.6.928.
3
Mechanisms of streptomycin(SM)-resistance of highly SM-resistant Pseudomonas aeruginosa strains.
J Antibiot (Tokyo). 1976 Feb;29(2):169-75. doi: 10.7164/antibiotics.29.169.
5
Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 1981 May;19(5):777-85. doi: 10.1128/AAC.19.5.777.
9
Transferable drug resistance in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 1972 Jan;1(1):22-9. doi: 10.1128/AAC.1.1.22.
10

引用本文的文献

1
Arctic Psychrotolerant sp. B14-6 Exhibits Temperature-Dependent Susceptibility to Aminoglycosides.
Antibiotics (Basel). 2022 Jul 29;11(8):1019. doi: 10.3390/antibiotics11081019.
2
The three NADH dehydrogenases of Pseudomonas aeruginosa: Their roles in energy metabolism and links to virulence.
PLoS One. 2021 Feb 3;16(2):e0244142. doi: 10.1371/journal.pone.0244142. eCollection 2021.
3
Enhanced Survival of Rifampin- and Streptomycin-Resistant Escherichia coli Inside Macrophages.
Antimicrob Agents Chemother. 2016 Jun 20;60(7):4324-32. doi: 10.1128/AAC.00624-16. Print 2016 Jul.
5
Increased survival of antibiotic-resistant Escherichia coli inside macrophages.
Antimicrob Agents Chemother. 2013 Jan;57(1):189-95. doi: 10.1128/AAC.01632-12. Epub 2012 Oct 22.
6
Gentamicin resistance in Pseudomonas aeruginosa: R-factor-mediated resistance.
Antimicrob Agents Chemother. 1974 Aug;6(2):191-9. doi: 10.1128/AAC.6.2.191.
7
Aminoglycoside resistance in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2005 Feb;49(2):479-87. doi: 10.1128/AAC.49.2.479-487.2005.
8
Use of aminoglycosides in elderly patients. Pharmacokinetic and clinical considerations.
Drugs Aging. 1997 Apr;10(4):259-77. doi: 10.2165/00002512-199710040-00003.
9
Ribosomal resistance of clinical enterococcal to streptomycin isolates.
Antimicrob Agents Chemother. 1984 Mar;25(3):398-9. doi: 10.1128/AAC.25.3.398.

本文引用的文献

1
Physiological Streptomycin Resistance in a Multiauxotroph of Escherichia coli Strain 15 T.
J Bacteriol. 1970 Dec;104(3):1294-8. doi: 10.1128/jb.104.3.1294-1298.1970.
2
ACTINOMYCIN SENSITIVITY IN ESCHERICHIA COLI PRODUCED BY EDTA.
Biochem Biophys Res Commun. 1965 Jan 4;18:13-7. doi: 10.1016/0006-291x(65)90874-0.
3
STUDIES ON THE RIBOSOMES OF STREPTOMYCIN-SENSITIVE AND RESISTANT STRAINS OF ESCHERICHIA COLI.
Proc Natl Acad Sci U S A. 1964 Apr;51(4):659-64. doi: 10.1073/pnas.51.4.659.
4
SOME PHYSICAL PROPERTIES OF BACTERIOPHAGE R17 AND ITS RIBONUCLEIC ACID.
J Mol Biol. 1964 Apr;8:496-507. doi: 10.1016/s0022-2836(64)80007-3.
5
Uptake of streptomycin by Escherichia coli.
Nature. 1960 Jan 2;185:23-4. doi: 10.1038/185023a0.
7
3',4'-dideoxy-kanamycin B active against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa.
J Antibiot (Tokyo). 1971 Jul;24(7):485-7. doi: 10.7164/antibiotics.24.485.
8
Enzymatic inactivation of gentamicin C components by cell-free extract from Pseudomonas aeruginosa.
J Antibiot (Tokyo). 1971 Jun;24(6):400-1. doi: 10.7164/antibiotics.24.400.
9
Streptomycin uptake by Mycobacterium tuberculosis.
Appl Microbiol. 1971 Apr;21(4):751-3. doi: 10.1128/am.21.4.751-753.1971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验