Suppr超能文献

荧光假单胞菌中的葡萄糖摄取与磷酸化

Glucose uptake and phosphorylation in Pseudomonas fluorescens.

作者信息

Eisenberg R C, Butters S J, Quay S C, Friedman S B

出版信息

J Bacteriol. 1974 Oct;120(1):147-53. doi: 10.1128/jb.120.1.147-153.1974.

Abstract

Pseudomonas fluorescens ATCC 13525 and a particulate glucose oxidase (d-glucose:oxygen oxidoreductase, EC 1.1.3.4) mutant of this organism, gox-7, were examined to determine if glucose oxidation via particulate glucose oxidase is a required first step for glucose uptake. Initial [(14)C]glucose-uptake rates in parent and gox-7 cells were qualitatively similar. Initial [(14)C]glucose-uptake product analysis revealed that glucose was accumulated via active transport and was rapidly metabolized to glucose-6-phosphate and gluconate-6-phosphate in both parent and gox-7 cells. Cell extracts contained soluble adenosine 5'-triphosphate specific kinase activity for phosphorylation of glucose. Glucose uptake was induced by glucose and not gluconate, thus, establishing independent regulation of glucose transport and glucose catabolism in p. fluorescens. The results prove that glucose oxidase was not an obligatory reaction for glucose carbon permeation in P. fluorescens. A general unifying scheme for glucose utilization in the aerobic fluorescent pseudomonads is suggested for the purpose of clarifying glucose uptake in these bacteria.

摘要

对荧光假单胞菌ATCC 13525及其该菌株的一种颗粒状葡萄糖氧化酶(D-葡萄糖:氧氧化还原酶,EC 1.1.3.4)突变体gox-7进行了检测,以确定通过颗粒状葡萄糖氧化酶进行的葡萄糖氧化是否是葡萄糖摄取的必需第一步。亲本细胞和gox-7细胞的初始[¹⁴C]葡萄糖摄取率在定性上相似。初始[¹⁴C]葡萄糖摄取产物分析表明,葡萄糖通过主动转运积累,并在亲本细胞和gox-7细胞中迅速代谢为6-磷酸葡萄糖和6-磷酸葡萄糖酸。细胞提取物含有用于葡萄糖磷酸化的可溶性腺苷5'-三磷酸特异性激酶活性。葡萄糖摄取由葡萄糖而非葡萄糖酸盐诱导,因此,在荧光假单胞菌中建立了葡萄糖转运和葡萄糖分解代谢的独立调节。结果证明,葡萄糖氧化酶对于荧光假单胞菌中葡萄糖碳的渗透不是必需反应。为了阐明这些细菌中的葡萄糖摄取,提出了需氧荧光假单胞菌中葡萄糖利用的一般统一方案。

相似文献

1
Glucose uptake and phosphorylation in Pseudomonas fluorescens.
J Bacteriol. 1974 Oct;120(1):147-53. doi: 10.1128/jb.120.1.147-153.1974.
2
Gluconate regulation of glucose catabolism in Pseudomonas fluorescens.
J Bacteriol. 1972 Oct;112(1):291-8. doi: 10.1128/jb.112.1.291-298.1972.
6
Effect of temperature on diauxic growth with glucose and organic acids in Pseudomonas fluorescens.
Arch Microbiol. 1978 Aug 1;118(2):133-40. doi: 10.1007/BF00415721.
8
Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency.
Res Microbiol. 2008 Nov-Dec;159(9-10):635-42. doi: 10.1016/j.resmic.2008.09.012. Epub 2008 Oct 22.

引用本文的文献

2
H/H variation in microbial lipids is controlled by NADPH metabolism.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12173-12182. doi: 10.1073/pnas.1818372116. Epub 2019 May 31.
3
Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0.
Appl Environ Microbiol. 2009 Jun;75(12):4162-74. doi: 10.1128/AEM.00295-09. Epub 2009 Apr 17.
4
Experimental identification and quantification of glucose metabolism in seven bacterial species.
J Bacteriol. 2005 Mar;187(5):1581-90. doi: 10.1128/JB.187.5.1581-1590.2005.
5
Energization of glucose transport by Pseudomonas fluorescens.
J Bacteriol. 1980 Jun;142(3):755-62. doi: 10.1128/jb.142.3.755-762.1980.
6
Multiplication of fluorescent pseudomonads at low substrate concentrations in tap water.
Antonie Van Leeuwenhoek. 1982;48(3):229-43. doi: 10.1007/BF00400383.
7
The active transport of 2-keto-D-gluconate in vesicles prepared from Pseudomonas purida.
Biochem J. 1985 May 15;228(1):257-62. doi: 10.1042/bj2280257.
8
The uptake of 2-ketogluconate by Pseudomonas putida.
Arch Microbiol. 1976 Oct 11;110(1):43-8. doi: 10.1007/BF00416967.
9
Growth characteristics of an obligately psychrophilic Vibrio sp.
Arch Microbiol. 1977 Jun 20;113(3):215-20. doi: 10.1007/BF00492028.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
4
Comparative carbohydrate metabolism and localization of enzymes in Pseudomonas and related microorganisms.
J Appl Bacteriol. 1960 Dec;23:400-41. doi: 10.1111/j.1365-2672.1960.tb00215.x.
5
Pathways of carbohydrate degradation in Pseudomonas fluorescens.
Bacteriol Rev. 1955 Dec;19(4):222-33. doi: 10.1128/br.19.4.222-233.1955.
6
The aerobic pseudomonads: a taxonomic study.
J Gen Microbiol. 1966 May;43(2):159-271. doi: 10.1099/00221287-43-2-159.
7
Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria.
J Bacteriol. 1970 Nov;104(2):808-13. doi: 10.1128/jb.104.2.808-813.1970.
8
Sugar transport in Neurospora crassa.
J Biol Chem. 1970 Apr 10;245(7):1694-8.
9
Glucose and gluconate metabolism in a mutant of Escherichia coli lacking gluconate-6-phosphate dehydrase.
J Bacteriol. 1967 May;93(5):1579-81. doi: 10.1128/jb.93.5.1579-1581.1967.
10
Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase.
J Bacteriol. 1967 May;93(5):1571-8. doi: 10.1128/jb.93.5.1571-1578.1967.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验