Suppr超能文献

神经元脉冲序列与随机点过程。I. 单个脉冲序列。

Neuronal spike trains and stochastic point processes. I. The single spike train.

作者信息

Perkel D H, Gerstein G L, Moore G P

出版信息

Biophys J. 1967 Jul;7(4):391-418. doi: 10.1016/S0006-3495(67)86596-2.

Abstract

In a growing class of neurophysiological experiments, the train of impulses ("spikes") produced by a nerve cell is subjected to statistical treatment involving the time intervals between spikes. The statistical techniques available for the analysis of single spike trains are described and related to the underlying mathematical theory, that of stochastic point processes, i.e., of stochastic processes whose realizations may be described as series of point events occurring in time, separated by random intervals. For single stationary spike trains, several orders of complexity of statistical treatment are described; the major distinction is that between statistical measures that depend in an essential way on the serial order of interspike intervals and those that are order-independent. The interrelations among the several types of calculations are shown, and an attempt is made to ameliorate the current nomenclatural confusion in this field. Applications, interpretations, and potential difficulties of the statistical techniques are discussed, with special reference to types of spike trains encountered experimentally. Next, the related types of analysis are described for experiments which involve repeated presentations of a brief, isolated stimulus. Finally, the effects of nonstationarity, e.g. long-term changes in firing rate, on the various statistical measures are discussed. Several commonly observed patterns of spike activity are shown to be differentially sensitive to such changes. A companion paper covers the analysis of simultaneously observed spike trains.

摘要

在越来越多的神经生理学实验中,神经细胞产生的一系列冲动(“尖峰”)要接受涉及尖峰之间时间间隔的统计处理。文中描述了可用于分析单个尖峰序列的统计技术,并将其与基础数学理论——随机点过程理论相关联,即其实现可描述为随时间发生的一系列点事件且被随机间隔隔开的随机过程。对于单个平稳尖峰序列,描述了几个复杂程度不同的统计处理层次;主要区别在于本质上依赖于尖峰间间隔序列顺序的统计量度与不依赖顺序的统计量度之间的区别。展示了几种计算类型之间的相互关系,并试图改善该领域当前的命名混乱状况。讨论了统计技术的应用、解释及潜在困难,特别提及了实验中遇到的尖峰序列类型。接下来,描述了涉及短暂、孤立刺激重复呈现的实验的相关分析类型。最后,讨论了非平稳性(例如发放率的长期变化)对各种统计量度的影响。结果表明,几种常见的尖峰活动模式对此类变化的敏感度不同。一篇配套论文涵盖了对同时观察到的尖峰序列的分析。

相似文献

6
Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas.混沌诱导的可靠性调制提高了下游皮质区域的输出放电率。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 1):031912. doi: 10.1103/PhysRevE.69.031912. Epub 2004 Mar 31.
9
Superposition of many independent spike trains is generally not a Poisson process.许多独立脉冲序列的叠加通常不是泊松过程。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):022901. doi: 10.1103/PhysRevE.73.022901. Epub 2006 Feb 23.

引用本文的文献

1
Continuous partitioning of neuronal variability.神经元变异性的连续划分
bioRxiv. 2025 Jul 27:2025.07.23.666404. doi: 10.1101/2025.07.23.666404.
3
Model of the HVC neural network as a song motor in zebra finch.斑胸草雀中作为歌曲运动中枢的HVC神经网络模型。
Front Comput Neurosci. 2024 Nov 20;18:1417558. doi: 10.3389/fncom.2024.1417558. eCollection 2024.
7
Beyond rhythm - a framework for understanding the frequency spectrum of neural activity.超越节律——理解神经活动频谱的框架。
Front Syst Neurosci. 2023 Aug 31;17:1217170. doi: 10.3389/fnsys.2023.1217170. eCollection 2023.

本文引用的文献

1
Interspike interval fluctuations in aplysia pacemaker neurons.海兔起搏神经元的峰间间期波动
Biophys J. 1966 Jul;6(4):411-34. doi: 10.1016/S0006-3495(66)86667-5. Epub 2008 Dec 31.
2
Analysis of Firing Pafferns in Single Neurons.单个神经元放电模式分析。
Science. 1960 Jun 17;131(3416):1811-2. doi: 10.1126/science.131.3416.1811.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验