Suppr超能文献

注视性眼动增强了灵长类视网膜所传递视觉信息的精度。

Fixational Eye Movements Enhance the Precision of Visual Information Transmitted by the Primate Retina.

作者信息

Wu Eric G, Brackbill Nora, Rhoades Colleen, Kling Alexandra, Gogliettino Alex R, Shah Nishal P, Sher Alexander, Litke Alan M, Simoncelli Eero P, Chichilnisky E J

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

Department of Physics, Stanford University, Stanford, CA, USA.

出版信息

bioRxiv. 2024 Aug 26:2023.08.12.552902. doi: 10.1101/2023.08.12.552902.

Abstract

Fixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal. Reconstructions were improved with artificial stimulus jitter that emulated fixational eye movements, even when the eye movement trajectory was assumed to be unknown and had to be inferred from retinal spikes. Reconstructions were degraded by small artificial perturbations of spike times, revealing more precise temporal encoding than suggested by previous studies. Finally, reconstructions were substantially degraded when derived from a model that ignored cell-to-cell interactions, indicating the importance of stimulus-evoked correlations. Thus, fixational eye movements enhance the precision of the retinal representation.

摘要

注视性眼动会改变从视网膜传输到大脑的神经冲动的数量和时间,但这些变化是增强还是削弱视网膜信号尚不清楚。为了对此进行量化,我们开发了一种贝叶斯方法,用于根据猕猴(雄性)视网膜中数百个视网膜神经节细胞(RGC)记录的神经冲动来重建自然图像,该方法将RGC光反应的似然模型与隐含在为去噪而优化的人工神经网络中的自然图像先验相结合。该方法达到或超越了先前重建算法的性能,并为表征视网膜信号提供了一个可解释的框架。通过模拟注视性眼动的人工刺激抖动,即使假设眼动轨迹未知且必须从视网膜神经冲动中推断出来,重建效果也得到了改善。神经冲动时间的小幅度人工扰动会降低重建效果,这表明时间编码比先前研究表明的更为精确。最后,当从忽略细胞间相互作用的模型得出重建结果时,重建效果会大幅下降,这表明刺激诱发的相关性很重要。因此,注视性眼动提高了视网膜表征的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5b2/11370846/16f84dc8d4a1/nihpp-2023.08.12.552902v4-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验