Suppr超能文献

肾脏对酸碱变化的代谢反应。I. 大鼠氨生成的酶促调控。

Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat.

作者信息

Alleyne G A, Scullard G H

出版信息

J Clin Invest. 1969 Feb;48(2):364-70. doi: 10.1172/JCI105993.

Abstract

Experiments were done on rats to investigate the nature of the renal response to metabolic acidosis and the changes in enzyme activity associated with increased ammoniagenesis. When metabolic acidosis was induced with oral feeding of ammonium chloride for 48 hr, there was an increase of activity of the enzyme phosphoenolpyruvate carboxykinase (PEPCK) in whole kidneys as well as in the kidney cortex. There was no change in PEPCK in liver, and glucose-6-phosphatase showed no change in kidney or liver in response to metabolic acidosis. The increase in PEPCK activity in kidney cortex varied with the degree of acidosis and there was a close correlation between cortical PEPCK activity and urinary ammonia. Kidney cortex mitochondrial PEPCK did not change in response to metabolic acidosis. An increase in PEPCK occurred as early as 6 hr after NH(4)Cl feeding, before there was any increase in kidney glutaminase I activity. Rats fed sodium phosphate, or given triamcinolone intramuscularly, developed a metabolic alkalosis, but there was increased urinary ammonia and an increase in activity of renal cortical PEPCK. Triamcinolone plus ammonium chloride induced a greater increase of PEPCK activity than triamcinolone by itself; on the contrary, the rise of glucose-6-phosphatase induced by triamcinolone was not enhanced by acidosis. Glucose-6-phosphatase from control and acidotic rats had identical kinetic characteristics. The results indicate that increased PEPCK activity is constantly related to increases of urinary ammonia. It is proposed that the increase of PEPCK activity is the key event in the ammoniagenesis and gluconeogenesis which follow on metabolic acidosis.

摘要

在大鼠身上进行了实验,以研究肾脏对代谢性酸中毒的反应性质以及与氨生成增加相关的酶活性变化。当通过口服氯化铵48小时诱导代谢性酸中毒时,全肾以及肾皮质中磷酸烯醇丙酮酸羧激酶(PEPCK)的活性增加。肝脏中的PEPCK没有变化,并且葡萄糖-6-磷酸酶在肾脏或肝脏中对代谢性酸中毒没有反应。肾皮质中PEPCK活性的增加随酸中毒程度而变化,并且皮质PEPCK活性与尿氨之间存在密切相关性。肾皮质线粒体PEPCK对代谢性酸中毒没有反应。早在喂食NH(4)Cl后6小时就出现了PEPCK的增加,此时肾脏谷氨酰胺酶I活性尚未增加。喂食磷酸钠或肌肉注射曲安西龙的大鼠出现代谢性碱中毒,但尿氨增加且肾皮质PEPCK活性增加。曲安西龙加氯化铵诱导的PEPCK活性增加比单独使用曲安西龙更大;相反,酸中毒并未增强曲安西龙诱导的葡萄糖-6-磷酸酶的升高。来自对照大鼠和酸中毒大鼠的葡萄糖-6-磷酸酶具有相同的动力学特征。结果表明,PEPCK活性增加与尿氨增加始终相关。有人提出,PEPCK活性增加是代谢性酸中毒后氨生成和糖异生的关键事件。

相似文献

5
Renal glutamine metabolism in rats fed high-protein diets.
Am J Physiol. 1978 Sep;235(3):E261-5. doi: 10.1152/ajpendo.1978.235.3.E261.
6
Relation of renal cortical gluconeogenesis, glutamate content, and production of ammonia.
J Clin Invest. 1970 Nov;49(11):1967-74. doi: 10.1172/JCI106416.
7
Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease.
Nephrol Dial Transplant. 2015 May;30(5):770-81. doi: 10.1093/ndt/gfu384. Epub 2014 Dec 18.

引用本文的文献

1
PCK1 is a key regulator of metabolic and mitochondrial functions in renal tubular cells.
Am J Physiol Renal Physiol. 2023 Jun 1;324(6):F532-F543. doi: 10.1152/ajprenal.00038.2023. Epub 2023 Apr 27.
2
Fructose in the kidney: from physiology to pathology.
Kidney Res Clin Pract. 2021 Dec;40(4):527-541. doi: 10.23876/j.krcp.21.138. Epub 2021 Nov 1.
3
Renal gluconeogenesis in insulin resistance: A culprit for hyperglycemia in diabetes.
World J Diabetes. 2021 May 15;12(5):556-568. doi: 10.4239/wjd.v12.i5.556.
4
V-ATPase blockade reduces renal gluconeogenesis and improves insulin secretion in type 2 diabetic rats.
Hypertens Res. 2020 Oct;43(10):1079-1088. doi: 10.1038/s41440-020-0450-0. Epub 2020 May 8.
5
Fructose Production and Metabolism in the Kidney.
J Am Soc Nephrol. 2020 May;31(5):898-906. doi: 10.1681/ASN.2019101015. Epub 2020 Apr 6.
6
Effect of renal tubule-specific knockdown of the Na/H exchanger NHE3 in Akita diabetic mice.
Am J Physiol Renal Physiol. 2019 Aug 1;317(2):F419-F434. doi: 10.1152/ajprenal.00497.2018. Epub 2019 Jun 5.
7
H-ATPase blockade reduced renal gluconeogenesis and plasma glucose in a diabetic rat model.
Med Mol Morphol. 2018 Jun;51(2):89-95. doi: 10.1007/s00795-017-0175-6. Epub 2018 Jan 9.
8
Ammonia Transporters and Their Role in Acid-Base Balance.
Physiol Rev. 2017 Apr;97(2):465-494. doi: 10.1152/physrev.00011.2016.
10
Integrated compensatory network is activated in the absence of NCC phosphorylation.
J Clin Invest. 2015 May;125(5):2136-50. doi: 10.1172/JCI78558. Epub 2015 Apr 20.

本文引用的文献

1
A METHOD FOR THE COLORIMETRIC DETERMINATION OF PHOSPHORUS.
Science. 1944 Nov 3;100(2601):413-4. doi: 10.1126/science.100.2601.413.
3
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
8
Relation of glutaminase I activity to glutamic acid concentration in the rat kidney.
Am J Physiol. 1960 Feb;198:227-9. doi: 10.1152/ajplegacy.1960.198.2.227.
10
Regulation of ammonia excretion in the rat.
Am J Physiol. 1955 Jul;182(1):131-8. doi: 10.1152/ajplegacy.1955.182.1.131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验