Kutter E M, Wiberg J S
J Virol. 1969 Oct;4(4):439-53. doi: 10.1128/JVI.4.4.439-453.1969.
Previous work from this laboratory has shown that the cytosine-containing T4 deoxyribonucleic acid (DNA) made by deoxycytidine triphosphatase (dCTPase) amber mutants is extensively degraded, and that nucleases controlled by genes 46 and 47 participate in this process. In this paper, we examine other consequences of a defective dCTPase. Included are studies of DNA synthesis and phage production, and of the control of both early and late protein synthesis after infection of Escherichia coli B with various T4 mutants defective in genes 56 (dCTPase), 42 (dCMP hydroxymethylase), 1 (deoxynucleotide kinase), 43 (DNA polymerase), 30 (polynucleotide ligase), 46 and 47 (DNA breakdown) or e(lysozyme). By varying the temperature of infection with a temperature-sensitive dCTPase mutant, we have been able to control intracellular dCTPase activity, and thus vary the cytosine content of the phage DNA. We have produced and characterized viable T4 phage in which cytosine replaces 20% of the 5-hydroxymethylcytosine (HMC) in the DNA. We present evidence which suggests that intact, cytosine-containing T4 DNA is much less efficient than is normal T4 DNA in directing the synthesis of tail-fiber antigen. Lysozyme production is much less affected by progressively decreasing dCTPase activity; however, complete substitution of cytosine is correlated with a depression of lysozyme synthesis greater than expected from the defective synthesis of DNA. Low but significant lysozyme synthesis is observed late after infection of E. coli B with T4 amber mutants defective in a number of genes controlling DNA synthesis. The "20% cytosine" T4 phage, once produced, can initiate an apparently normal infection at permissive temperatures; the synthesis of early enzymes, DNA, and phage does not appear to be impaired. Two roles for HMC in T4 DNA have been indicated previously: (i) involvement in host-controlled restriction of the phage, in which glucosylation of the hydroxymethyl group plays a crucial role (16, 29, 53, 58), and (ii) protection of vegetative DNA against phage-controlled nucleases, a protection not dependent on glucosylation (41, 66, 67). A third role is suggested by our present results: transcription of at least some late genes can occur only from HMC-containing DNA and not from cytosine-containing DNA.
该实验室之前的研究表明,由脱氧胞苷三磷酸酶(dCTPase)琥珀突变体产生的含胞嘧啶的T4脱氧核糖核酸(DNA)会被大量降解,并且由基因46和47控制的核酸酶参与了这一过程。在本文中,我们研究了有缺陷的dCTPase的其他影响。包括对DNA合成、噬菌体产生以及用各种在基因56(dCTPase)、42(dCMP羟甲基化酶)、1(脱氧核苷酸激酶)、43(DNA聚合酶)、30(多核苷酸连接酶)、46和47(DNA降解)或e(溶菌酶)有缺陷的T4突变体感染大肠杆菌B后早期和晚期蛋白质合成的控制的研究。通过改变对温度敏感的dCTPase突变体的感染温度,我们能够控制细胞内dCTPase的活性,从而改变噬菌体DNA的胞嘧啶含量。我们已经产生并鉴定了一种存活的T4噬菌体,其中胞嘧啶取代了DNA中5-羟甲基胞嘧啶(HMC)的20%。我们提供的证据表明,完整的含胞嘧啶的T4 DNA在指导尾纤维抗原的合成方面比正常的T4 DNA效率低得多。溶菌酶的产生受dCTPase活性逐渐降低的影响较小;然而,胞嘧啶的完全取代与溶菌酶合成的抑制相关,这种抑制比DNA合成缺陷所预期的更大。在用一些控制DNA合成的基因有缺陷的T4琥珀突变体感染大肠杆菌B后较晚的时候,观察到了低水平但显著的溶菌酶合成。一旦产生,“20%胞嘧啶”的T4噬菌体在允许温度下能够引发明显正常的感染;早期酶、DNA和噬菌体的合成似乎没有受到损害。之前已经指出HMC在T4 DNA中的两个作用:(i)参与宿主对噬菌体的控制限制,其中羟甲基的糖基化起着关键作用(16、29、53、58),以及(ii)保护营养DNA免受噬菌体控制的核酸酶的作用,这种保护不依赖于糖基化(41、66、67)。我们目前的结果表明了第三个作用:至少一些晚期基因的转录只能从含HMC的DNA发生,而不能从含胞嘧啶的DNA发生。