Fishman P H, Atikkan E E
J Biol Chem. 1979 Jun 10;254(11):4342-4.
Exposure of HeLa cells to sodium butyrate caused an increase in choleragen (cholera toxin) receptors as measured by increased binding of 125I-choleragen to the intact cells. The process was dependent on time and butyrate concentration; maximal increases (over 40-fold) were observed at 48 h and 5 mM sodium butyrate. Other short chain fatty acids were less effective in elevating choleragen receptors in the order: butyrate greater than pentanoate greater than hexanoate greater than propionate. Acetate and isobutyrate had no effect. The increase in toxin receptors caused by butyrate was reversible and occurred in serum-free medium. The affinity of choleragen for control and butyrate-treated HeLa cells appeared to be similar. Butyrate also induced an elevation in choleragen receptors in rat C6 glial and Friend erythroleukemic cells but not in a butyrate-resistant HeLa mutant. The increase observed in Friend cells paralleled the increase in ganglioside GM1 (galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide), the reported choleragen receptor. Although no GM1 could be detected in untreated Hela cells, small amounts were found in cells exposed to butyrate.