Suppr超能文献

堆叠和未堆叠叶绿体膜的结构分化。衣藻野生型和突变株的冷冻蚀刻电子显微镜观察。

Structural differentiation of stacked and unstacked chloroplast membranes. Freeze-etch electron microscopy of wild-type and mutant strains of Chlamydomonas.

作者信息

Goodenough U W, Staehelin L A

出版信息

J Cell Biol. 1971 Mar;48(3):594-619. doi: 10.1083/jcb.48.3.594.

Abstract

Wild-type chloroplast membranes from Chlamydomonas reinhardi exhibit four faces in freeze-etchreplicas: the complementary Bs and Cs faces are found where the membranes are stacked together; the complementary Bu and Cu faces are found in unstacked membranes. The Bs face carries a dense population of regularly spaced particles containing the large, 160 +/- 10 A particles that appear to be unique to chloroplast membranes. Under certain growth conditions, membrane stacking does not occur in the ac-5 strain. When isolated, these membranes remain unstacked, exhibit only Bu and Cu faces, and retain the ability to carry out normal photosynthesis. Membrane stacking is also absent in the ac-31 strain, and, when isolated in a low-salt medium, these membranes remain unstacked and exhibit only Bu and Cu faces. When isolated in a high-salt medium, however, they stack normally, and Bs and Cs faces are produced by this in vitro stacking process. We conclude that certain particle distributions in the chloroplast membrane are created as a consequence of the stacking process, and that the ability of membranes to stack can be modified both by gene mutation and by the ionic environment in which the membranes are found.

摘要

莱茵衣藻的野生型叶绿体膜在冷冻蚀刻复制品中呈现出四个面

互补的Bs面和Cs面出现在膜堆叠在一起的地方;互补的Bu面和Cu面出现在未堆叠的膜中。Bs面上有大量规则间隔的颗粒,其中包含似乎是叶绿体膜特有的160±10埃的大颗粒。在某些生长条件下,ac-5菌株中不会发生膜堆叠。分离后,这些膜仍未堆叠,仅呈现Bu面和Cu面,并保留进行正常光合作用的能力。ac-31菌株中也不存在膜堆叠,当在低盐培养基中分离时,这些膜仍未堆叠,仅呈现Bu面和Cu面。然而,当在高盐培养基中分离时,它们会正常堆叠,并且这种体外堆叠过程会产生Bs面和Cs面。我们得出结论,叶绿体膜中的某些颗粒分布是堆叠过程的结果,并且膜的堆叠能力可以通过基因突变和膜所处的离子环境来改变。

相似文献

5
A chloroplast membrane lacking photosystem II. Thylakoid stacking in the absence of the photosystem II particle.
Biochim Biophys Acta. 1979 Jun 5;546(3):481-97. doi: 10.1016/0005-2728(79)90083-5.
6
Ultrastructural organization of chloroplast thylakoids of the green alga Oocystis marssonii.
J Cell Biol. 1973 May;57(2):306-14. doi: 10.1083/jcb.57.2.306.
10
Attachment of chloroplast polysomes to thylakoid membranes in Chlamydomonas reinhardtii.
Proc Natl Acad Sci U S A. 1973 May;70(5):1554-8. doi: 10.1073/pnas.70.5.1554.

引用本文的文献

1
Regulation of Microalgal Photosynthetic Electron Transfer.
Plants (Basel). 2024 Jul 29;13(15):2103. doi: 10.3390/plants13152103.
2
7
Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):5042-7. doi: 10.1073/pnas.1322494111. Epub 2014 Mar 17.
8
Light-harvesting pigment-protein complex deficiency in Hosta (Liliaceae).
Planta. 1978 Jan;143(3):275-8. doi: 10.1007/BF00391998.
10
Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography.
Plant Physiol. 2011 Apr;155(4):1601-11. doi: 10.1104/pp.110.170647. Epub 2011 Jan 11.

本文引用的文献

1
Quantasome: Size and Composition.
Science. 1964 May 22;144(3621):1009-11. doi: 10.1126/science.144.3621.1009.
5
COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.
Plant Physiol. 1949 Jan;24(1):1-15. doi: 10.1104/pp.24.1.1.
7
OBSERVATIONS ON THE STRUCTURE OF RHODOSPIRILLUM RUBUM.
J Cell Biol. 1965 May;25(2):279-91. doi: 10.1083/jcb.25.2.279.
8
OBSERVATIONS ON THE STRUCTURE OF RHODOSPIRILLUM MOLISCHIANUM.
J Cell Biol. 1965 May;25(2):261-78. doi: 10.1083/jcb.25.2.261.
9
BIOLOGY OF BUDDING BACTERIA. 3. FINE STRUCTURE OF RHODOMICROBIUM AND HYPHOMICROBIUM SPP.
J Bacteriol. 1965 Feb;89(2):503-12. doi: 10.1128/jb.89.2.503-512.1965.
10
THE FINE STRUCTURE OF GREEN BACTERIA.
J Cell Biol. 1964 Jul;22(1):207-25. doi: 10.1083/jcb.22.1.207.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验