Johansen J T, Vallee B L
Proc Natl Acad Sci U S A. 1973 Jul;70(7):2006-10. doi: 10.1073/pnas.70.7.2006.
The spectra of the alpha, beta, and gamma forms of zinc monoarsanilazotyrosine-248 carboxypeptidase A are indistinguishable. At pH 8.2 their crystals are yellow, while their solutions are red, lambda(max) 510 nm. Absorption and circular dichroism-pH titrations of the modified zinc and apoenzymes demonstrate that the absorption band at 510 nm is due to a complex between arsanilazotyrosine-248 and the active-site zinc atom. Two pK(app) values, 7.7 and 9.5, characterize the formation and dissociation of this arsanilazotyrosine-248.Zn complex. On titrations of the apoenzyme, the absorption band at 510 nm is completely absent at all pH values. Instead, there is a single pK(app), 9.4, due to the ionization of the azophenol, lambda(max) 485 nm. Substitution of other metals for zinc results in analogous intramolecular coordination complexes with absorption maxima and circular dichroism extrema characteristic of the particular metal. Similar data and conclusions have been derived from studies of heterocyclic azophenol.metal complexes. The present studies demonstrate that the conformation of the crystals of all generally available alpha, beta, and gamma forms of the arsanilazoenzyme differs from that of their solutions. The spectra of the modified x-ray crystals, however, differ from those of all other carboxypeptidase forms and crystal habits studied. The internal consistency of their data, their interpretation, and the conclusions of Lipscomb and coworkers [Proc. Nat. Acad. Sci. USA (1972) 69, 2850-2854] are examined. Dissimilar chemical modification or conformation is thought to underlie these differences. The arsanilazotyrosine-248.zinc complex is a sensitive, dynamic probe of environmental conditions. Its response to changes in pH and physical state of the enzyme suggest different orientation of the arsanilazotyrosine-248 side chain in solution from that in the crystal. This finding calls for reexamination of the basis of the substrate-induced conformation change which has been thought to be critical to the mechanism, postulated on the basis of the x-ray structure analysis performed at pH 7.5.
单对氨基苯胂酸酪氨酸 - 248羧肽酶A的α、β和γ形式的光谱无法区分。在pH 8.2时,它们的晶体呈黄色,而溶液呈红色,最大吸收波长为510 nm。对修饰后的锌酶和脱辅基酶进行的吸收光谱和圆二色性 - pH滴定表明,510 nm处的吸收带是由于对氨基苯胂酸酪氨酸 - 248与活性位点锌原子之间形成的复合物所致。两个表观pK值,7.7和9.5,表征了这种对氨基苯胂酸酪氨酸 - 248·锌复合物的形成和解离。在对脱辅基酶进行滴定时,在所有pH值下510 nm处的吸收带完全不存在。相反,由于偶氮酚的电离,存在一个单一的表观pK值9.4,最大吸收波长为485 nm。用其他金属替代锌会导致类似的分子内配位复合物,其具有特定金属特有的最大吸收波长和圆二色性极值。从杂环偶氮酚·金属复合物的研究中也得出了类似的数据和结论。目前的研究表明,所有常见的对氨基苯胂酸酶的α、β和γ形式的晶体构象与其溶液的构象不同。然而,修饰后的X射线晶体的光谱与所有其他研究过的羧肽酶形式和晶体习性的光谱不同。对他们的数据的内在一致性、其解释以及利普斯科姆及其同事的结论[《美国国家科学院院刊》(1972年)69, 2850 - 2854]进行了检验。认为这些差异的基础是不同的化学修饰或构象。对氨基苯胂酸酪氨酸 - 248·锌复合物是环境条件的敏感动态探针。它对酶的pH值和物理状态变化的响应表明,对氨基苯胂酸酪氨酸 - 248侧链在溶液中的取向与晶体中的不同。这一发现要求重新审视底物诱导的构象变化的基础,这种构象变化被认为对基于在pH 7.5下进行的X射线结构分析所假设的机制至关重要。