Gordon A M, Godt R E, Donaldson S K, Harris C E
J Gen Physiol. 1973 Nov;62(5):550-74. doi: 10.1085/jgp.62.5.550.
The maximal calcium-activated isometric tension produced by a skinned frog single muscle fiber falls off as the ionic strength of the solution bathing this fiber is elevated declining to zero near 0.5 M as the ionic strength is varied using KCl. When other neutral salts are used, the tension always declines at high ionic strength, but there is some difference between the various neutral salts used. The anions and cations can be ordered in terms of their ability to inhibit the maximal calcium-activated tension. The order of increasing inhibition of tension (decreasing tension) at high ionic strength for anions is propionate(-) approximately SO(4) (--) < Cl(-) < Br(-). The order of increasing inhibition of calcium-activated tension for cations is K(+) approximately Na(+) approximately TMA(+) < TEA(+) < TPrA(+) < TBuA(+). The decline of maximal calcium-activated isometric tension with elevated salt concentration (ionic strength) can quantitatively explain the decline of isometric tetanic tension of a frog muscle fiber bathed in a hypertonic solution if one assumes that the internal ionic strength of a muscle fiber in normal Ringer's solution is 0.14-0.17 M. There is an increase in the base-line tension of a skinned muscle fiber bathed in a relaxing solution (no added calcium and 3 mM EGTA) of low ionic strength. This tension, which has no correlate in the intact fiber in hypotonic solutions, appears to be a noncalcium-activated tension and correlates more with a declining ionic strength than with small changes in [MgATP], [Mg], pH buffer, or [EGTA]. It is dependent upon the specific neutral salts used with cations being ordered in increasing inhibition of this noncalcium-activated tension (decreasing tension) as TPrA(+) < TMA(+) < K(+) approximately Na(+). Measurements of potentials inside these skinned muscle fibers bathed in relaxing solutions produced occasional small positive values (<6 mV) which were not significantly different from zero.
当用氯化钾改变溶液离子强度时,剥制的青蛙单根肌纤维产生的最大钙激活等长张力会随着浸泡该纤维的溶液离子强度升高而下降,在离子强度接近0.5M时降至零。当使用其他中性盐时,张力在高离子强度下总是下降,但所使用的各种中性盐之间存在一些差异。阴离子和阳离子可以根据它们抑制最大钙激活张力的能力进行排序。在高离子强度下,阴离子抑制张力增加(张力降低)的顺序为丙酸根离子(-)≈硫酸根离子(--)<氯离子(-)<溴离子(-)。阳离子抑制钙激活张力增加的顺序为钾离子(+)≈钠离子(+)≈四甲基铵离子(+)<四乙基铵离子(+)<四丙基铵离子(+)<四丁基铵离子(+)。如果假设正常林格氏溶液中肌纤维的内部离子强度为0.14 - 0.17M,那么最大钙激活等长张力随盐浓度(离子强度)升高而下降的现象可以定量解释浸泡在高渗溶液中的青蛙肌纤维等长强直张力的下降。浸泡在低离子强度的松弛溶液(不添加钙和3mM乙二醇双四乙酸)中的剥制肌纤维的基线张力会增加。这种张力在低渗溶液中的完整纤维中不存在对应情况,似乎是一种非钙激活张力,并且与离子强度下降的相关性更大,而不是与[MgATP]、[Mg]、pH缓冲液或[EGTA]的微小变化相关。它取决于所使用的特定中性盐,阳离子抑制这种非钙激活张力(张力降低)的顺序为四丙基铵离子(+)<四甲基铵离子(+)<钾离子(+)≈钠离子(+)。测量浸泡在松弛溶液中的这些剥制肌纤维内部的电位时,偶尔会出现小的正值(<6mV),这些值与零没有显著差异。