Rothe F
J Math Biol. 1979 May 15;7(4):375-84. doi: 10.1007/BF00275155.
The reaction-diffusion system considered involves only one nonlinear term and is a gradient system. In a bifurcation analysis for the equilibrium states, the global existence of infinitely many solution branches can be shown by the method of Ljusternik-Schnirelmann. Their stability is studied. Using a Ljapunov functional it can be shown that the solutions of the time-dependent system converge to the equilibrium states.
所考虑的反应扩散系统仅涉及一个非线性项,并且是一个梯度系统。在对平衡态的分岔分析中,可以通过柳斯捷尔尼克 - 施尼雷尔曼方法证明存在无穷多个解分支的全局存在性。研究了它们的稳定性。利用一个李雅普诺夫泛函可以证明与时间相关的系统的解收敛到平衡态。