Suppr超能文献

3.2埃孔隙中扩散与对流的动力学。通过计算机模拟得到的精确解。

Kinetics of diffusion and convection in 3.2-A pores. Exact solution by computer simulation.

作者信息

Levitt D G

出版信息

Biophys J. 1973 Feb;13(2):186-206. doi: 10.1016/S0006-3495(73)85979-X.

Abstract

The kinetics of transport in pores the size postulated for cell membranes has been investigated by direct computer simulation (molecular dynamics). The simulated pore is 11 A long and 3.2 A in radius, and the water molecules are modeled by hard, smooth spheres, 1 A in radius. The balls are given an initial set of positions and velocities (with an average temperature of 313 degrees K) and the computer then calculates their exact paths through the pore. Two different conditions were used at the ends of the pore. In one, the ends are closed and the balls are completely isolated. In the other, the ball density in each end region is fixed so that a pressure difference can be established and a net convective flow produced. The following values were directly measured in the simulated experiments: net and diffusive (oneway) flux; pressure, temperature, and diffusion coefficients in the pore; area available for diffusion; probability distribution of ball positions in the pore; and the interaction between diffusion and convection. The density, viscosity, and diffusion coefficients in the bulk fluid were determined from the theory of hard sphere dense gases. From these values, the "equivalent" pore radius (determined by the same procedure that is used for cell membranes) was computed and compared with the physical pore radius of the simulated pore.

摘要

通过直接计算机模拟(分子动力学)研究了细胞膜假定尺寸的孔中的输运动力学。模拟的孔长11埃,半径3.2埃,水分子由半径为1埃的硬的、光滑的球体模拟。给球体一组初始位置和速度(平均温度为313开尔文),然后计算机计算它们通过孔的精确路径。在孔的两端使用了两种不同的条件。一种情况下,两端封闭,球体完全隔离。另一种情况下,每个端部区域的球密度固定,以便建立压力差并产生净对流。在模拟实验中直接测量了以下值:净通量和扩散(单向)通量;孔中的压力、温度和扩散系数;可用于扩散的面积;孔中球位置的概率分布;以及扩散与对流之间的相互作用。体相流体中的密度、粘度和扩散系数由硬球致密气体理论确定。根据这些值,计算了“等效”孔半径(通过与用于细胞膜相同的程序确定)并与模拟孔的物理孔半径进行比较。

相似文献

1
Kinetics of diffusion and convection in 3.2-A pores. Exact solution by computer simulation.
Biophys J. 1973 Feb;13(2):186-206. doi: 10.1016/S0006-3495(73)85979-X.
3
Pore flow models and their applicability.
Ion Exch Membr. 1975 Dec;2(2):117-22.
4
Forces and stresses acting on fusion pore membrane during secretion.
Biochim Biophys Acta. 2009 May;1788(5):1009-23. doi: 10.1016/j.bbamem.2009.01.019. Epub 2009 Feb 11.
5
A new theory of transport for cell membrane pores. II. Exact results and computer simulation (molecular dynamics).
Biochim Biophys Acta. 1974 Nov 27;373(1):132-40. doi: 10.1016/0005-2736(74)90112-6.
6
Osmotic flow in membrane pores of molecular size.
J Membr Biol. 1994 Feb;137(3):197-203. doi: 10.1007/BF00232588.
7
Osmotic permeability in a molecular dynamics simulation of water transport through a single-occupancy pore.
Biochim Biophys Acta. 1995 Dec 13;1240(2):159-66. doi: 10.1016/0005-2736(95)00187-5.
9
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.

引用本文的文献

1
Molecular dynamics of water in the neighborhood of aquaporins.
Eur Biophys J. 2013 Apr;42(4):223-39. doi: 10.1007/s00249-012-0880-y. Epub 2012 Dec 29.
2
Determinants of water permeability through nanoscopic hydrophilic channels.
Biophys J. 2009 Feb;96(3):925-38. doi: 10.1016/j.bpj.2008.09.059.
3
A practical extension of hydrodynamic theory of porous transport for hydrophilic solutes.
Microcirculation. 2006 Mar;13(2):111-8. doi: 10.1080/10739680500466384.
5
Osmotic flow in membrane pores of molecular size.
J Membr Biol. 1994 Feb;137(3):197-203. doi: 10.1007/BF00232588.
6
A continuum model for coupled cells.
J Math Biol. 1983;17(3):351-69. doi: 10.1007/BF00276521.
7
A kinetic theory, near-continuum model for membrane transport.
Ann Biomed Eng. 1973 Dec;1(4):489-97. doi: 10.1007/BF02367272.
8
Mechanism of osmotic flow in porous membranes.
Biophys J. 1974 Dec;14(12):957-82. doi: 10.1016/S0006-3495(74)85962-X.
9
Ionic channels in excitable membranes. Current problems and biophysical approaches.
Biophys J. 1978 May;22(2):283-94. doi: 10.1016/S0006-3495(78)85489-7.

本文引用的文献

1
Characterization of biological membranes by equivalent pores.
J Gen Physiol. 1968 May;51(5):Suppl:335S+.
2
Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry.
Biochim Biophys Acta. 1972 Jan 17;255(1):273-303. doi: 10.1016/0005-2736(72)90028-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验