Suppr超能文献

溶酶体水解酶在细胞内运输过程中的物理化学修饰。

Physicochemical modifications of lysosomal hydrolases during intracellular transport.

作者信息

Goldstone A, Koenig H

出版信息

Biochem J. 1973 Feb;132(2):267-82. doi: 10.1042/bj1320267.

Abstract
  1. The following fractions were prepared from rat kidney and characterized ultrastructurally, biochemically and enzymically: (a) an ordinary rough microsomal (RM(1)) fraction; (b) a special rough microsomal (RM(2)) fraction enriched seven- to nine-fold in acid hydrolases over the homogenate; (c) a smooth microsomal (SM) fraction; (d) a Golgi (GM) fraction enriched 2.5-fold in acid hydrolases and 10-, 15- and 20-fold in sialyltransferase, N-acetyl-lactosamine synthetase and galactosyltransferase respectively; (e) a lysosomal (L) fraction enriched 15- to 23-fold in acid hydrolases. The frequency of Golgi sacs and tubules seen in the electron microscope and the specific activity of the three glycosyltransferases in these fractions increased in the order: RM(2)<RM(1)<SM<GM. 2. Five lysosomal hydrolases, acid phosphatase, beta-N-acetyl-hexosaminidase, beta-galactosidase, beta-glucuronidase and arylsulphatase, were characterized in these fractions with respect to (a) solubility on freeze-thawing and (b) electrophoretic mobility in polyacrylamide gels. 3. In the RM(2) fraction each of these hydrolases occurred largely or exclusively as a single bound basic form coincident with cationic glycoprotein bands in gels (Goldstone et al., 1973). 4. In the L fraction these hydrolases were present largely as soluble, acidic (anionic) forms. 5. The solubility, electrophoretic heterogeneity and anodic mobility of these hydrolases increased progressively in subcellular fractions in the order: RM(2)<RM(1)<SM<GM<L. 6. These findings, together with evidence cited in the text showing that N-acetylneuraminic acid residues are responsible for the solubility and electronegative charge of these acidic forms and incorporation of these residues into the Golgi apparatus, support the following scheme for the biosynthesis of lysosomal enzymes. Each hydrolase is synthesized as a bound basic glycoprotein enzyme in a restricted portion of the rough endoplasmic reticulum. The soluble, acidic forms are generated as the nascent glycoprotein enzymes migrate through the Golgi apparatus through the attachment of sugar sequences containing N-acetylneuraminic acid.
摘要
  1. 从大鼠肾脏制备了以下组分,并对其进行了超微结构、生化和酶学特性分析:(a) 普通粗面微粒体(RM(1))组分;(b) 一种特殊的粗面微粒体(RM(2))组分,其酸性水解酶比匀浆富集7至9倍;(c) 滑面微粒体(SM)组分;(d) 高尔基体(GM)组分,其酸性水解酶富集2.5倍,唾液酸转移酶、N-乙酰乳糖胺合成酶和半乳糖基转移酶分别富集10倍、15倍和20倍;(e) 溶酶体(L)组分,其酸性水解酶富集15至23倍。在电子显微镜下观察到的高尔基体囊泡和小管的频率以及这些组分中三种糖基转移酶的比活性按以下顺序增加:RM(2)<RM(1)<SM<GM。2. 对这些组分中的五种溶酶体水解酶,即酸性磷酸酶、β-N-乙酰己糖胺酶、β-半乳糖苷酶、β-葡萄糖醛酸酶和芳基硫酸酯酶,就以下方面进行了特性分析:(a) 冻融后的溶解性;(b) 在聚丙烯酰胺凝胶中的电泳迁移率。3. 在RM(2)组分中,这些水解酶中的每一种在很大程度上或完全以单一结合的碱性形式存在,与凝胶中的阳离子糖蛋白带一致(戈德斯通等人,1973年)。4. 在L组分中,这些水解酶主要以可溶性酸性(阴离子)形式存在。5. 这些水解酶的溶解性、电泳异质性和阳极迁移率在亚细胞组分中按以下顺序逐渐增加:RM(2)<RM(1)<SM<GM<L。6. 这些发现,连同文中引用的表明N-乙酰神经氨酸残基负责这些酸性形式的溶解性和负电荷以及这些残基掺入高尔基体的证据,支持了以下溶酶体酶生物合成方案。每种水解酶在粗面内质网的受限部分作为结合的碱性糖蛋白酶合成。可溶性酸性形式是在新生糖蛋白酶通过高尔基体迁移过程中,通过连接含有N-乙酰神经氨酸的糖序列而产生的。
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48ce/1177585/033268fff224/biochemj00610-0154-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验