Suppr超能文献

The ionic basis of oscillatory responses of skate electroreceptors.

作者信息

Clusin W T, Bennett M V

出版信息

J Gen Physiol. 1979 Jun;73(6):703-23. doi: 10.1085/jgp.73.6.703.

Abstract

When physiological conditions are simulated, skate electroreceptors produce small maintained oscillatory currents. Larger damped oscillations of similar time-course are observed in voltage clamp. Subtraction of leakage in voltage clamp data shows that the oscillations involve no net outward current across the lumenal surface of the epithelium. The oscillations are much faster than the late outward current generated by the lumenal membranes of the receptor cells. Treatment of the basal surface of the epithelium with tetraethyl ammonium (TEA), high K, Co, or EGTA reversibly blocks the oscillations in voltage clamp, but has little or no effect on the epithelial action potential in current clamp or on the current-voltage relation. The TEA sensitivity of the oscillations indicates that they involve a potassium conductance in the basal membranes of the receptor cells. Treatment of the basal membranes with TEA and high calcium, with strontium, or with barium causes these membranes to produce large regenerative responses. Direct stimulation of the basal membranes then elicits a lumen-positive action potential whereas stimulation of the lumenal membranes elicits a diphasic action potential. Excitability of the basal membranes is abolished by extracellular Co, Mn, or La. Modulation of the lumenal membrane calcium conductance by the basal membrane conductances probably gives rise to the oscillatory receptor currents evoked by small voltage stimuli. The slower calcium-activated late conductance in the lumenal membranes may be involved in sensory accommodation.

摘要

相似文献

1
The ionic basis of oscillatory responses of skate electroreceptors.
J Gen Physiol. 1979 Jun;73(6):703-23. doi: 10.1085/jgp.73.6.703.
3
The oscillatory responses of skate electroreceptors to small voltage stimuli.
J Gen Physiol. 1979 Jun;73(6):685-702. doi: 10.1085/jgp.73.6.685.
4
Calcium-activated conductance in skate electroreceptors: voltage clamp experiments.
J Gen Physiol. 1977 Feb;69(2):145-82. doi: 10.1085/jgp.69.2.145.
5
Calcium-activated conductance in skate electroreceptors: current clamp experiments.
J Gen Physiol. 1977 Feb;69(2):121-43. doi: 10.1085/jgp.69.2.121.
9
Properties of a persistent inward current in normal and TEA-injected motoneurons.
J Neurophysiol. 1980 Jun;43(6):1700-24. doi: 10.1152/jn.1980.43.6.1700.

引用本文的文献

1
Ion channels as molecular targets of glioblastoma electrotherapy.
Front Cell Neurosci. 2023 Mar 17;17:1133984. doi: 10.3389/fncel.2023.1133984. eCollection 2023.
2
Molecular basis of ancestral vertebrate electroreception.
Nature. 2017 Mar 16;543(7645):391-396. doi: 10.1038/nature21401. Epub 2017 Mar 6.
3
4
Sensory coding in oscillatory electroreceptors of paddlefish.
Chaos. 2011 Dec;21(4):047505. doi: 10.1063/1.3669494.
5
Androgen-induced changes in the response dynamics of ampullary electrosensory primary afferent neurons.
J Neurosci. 2000 Nov 15;20(22):8586-95. doi: 10.1523/JNEUROSCI.20-22-08586.2000.
6
Ion channels and transporters in the electroreceptive ampullary epithelium from skates.
Biophys J. 1995 Dec;69(6):2467-75. doi: 10.1016/S0006-3495(95)80117-7.
10
The oscillatory responses of skate electroreceptors to small voltage stimuli.
J Gen Physiol. 1979 Jun;73(6):685-702. doi: 10.1085/jgp.73.6.685.

本文引用的文献

1
THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++.
J Gen Physiol. 1964 Sep;48(1):141-62. doi: 10.1085/jgp.48.1.141.
4
The ionic requirements for the production of action potentials in crustacean muscle fibres.
J Physiol. 1958 Aug 6;142(3):516-43. doi: 10.1113/jphysiol.1958.sp006034.
5
The electrical properties of crustacean muscle fibres.
J Physiol. 1953 Apr 28;120(1-2):171-204. doi: 10.1113/jphysiol.1953.sp004884.
6
Nerve membrane excitation without threshold.
Proc Natl Acad Sci U S A. 1970 Apr;65(4):884-91. doi: 10.1073/pnas.65.4.884.
7
Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control.
J Physiol. 1973 Mar;229(2):409-55. doi: 10.1113/jphysiol.1973.sp010146.
8
Tetrodotoxin-resistant electric activity in presynaptic terminals.
J Physiol. 1969 Aug;203(2):459-87. doi: 10.1113/jphysiol.1969.sp008875.
9
A voltage-sensitive persistent calcium conductance in neuronal somata of Helix.
J Physiol. 1976 Jan;254(1):129-51. doi: 10.1113/jphysiol.1976.sp011225.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验