Suppr超能文献

二价阳离子对电压钳制乌贼轴突的影响。

Effects of internal divalent cations on voltage-clamped squid axons.

作者信息

Begenisich T, Lynch C

出版信息

J Gen Physiol. 1974 Jun;63(6):675-89. doi: 10.1085/jgp.63.6.675.

Abstract

We have studied the effects of internally applied divalent cations on the ionic currents of voltage-clamped squid giant axons. Internal concentrations of calcium up to 10 mM have little, if any, effect on the time-course, voltage dependence, or magnitude of the ionic currents. This is inconsistent with the notion that an increase in the internal calcium concentration produced by an inward calcium movement with the action potential triggers sodium inactivation or potassium activation. Low internal zinc concentrations ( approximately 1 mM) selectively and reversibly slow the kinetics of the potassium current and reduce peak sodium current by about 40% with little effect on the voltage dependence of the ionic currents. Higher concentrations ( approximately 10 mM) produce a considerable (ca. 90%) nonspecific reversible reduction of the ionic currents. Large hyperpolarizing conditioning pulses reduce the zinc effect. Internal zinc also reversibly depolarizes the axon by 20-30 mV. The effects of internal cobalt, cadmium, and nickel are qualitatively similar to those of zinc: only calcium among the cations tested is without effect.

摘要

我们研究了内部施加二价阳离子对电压钳制的枪乌贼巨大轴突离子电流的影响。内部钙浓度高达10 mM时,对离子电流的时间进程、电压依赖性或大小几乎没有影响(如果有影响的话也很小)。这与以下观点不一致:即动作电位期间内向钙流导致的内部钙浓度增加会触发钠失活或钾激活。低内部锌浓度(约1 mM)选择性且可逆地减慢钾电流的动力学,并使钠电流峰值降低约40%,而对离子电流的电压依赖性影响很小。更高浓度(约10 mM)会使离子电流产生相当大(约90%)的非特异性可逆降低。大的超极化调节脉冲会降低锌的作用。内部锌还会使轴突可逆地去极化20 - 30 mV。内部钴、镉和镍的作用在性质上与锌相似:在所测试的阳离子中,只有钙没有作用。

相似文献

1
Effects of internal divalent cations on voltage-clamped squid axons.
J Gen Physiol. 1974 Jun;63(6):675-89. doi: 10.1085/jgp.63.6.675.
2
The action of certain polyvalent cations on the voltage-clamped lobster axon.
J Gen Physiol. 1968 Mar;51(3):279-91. doi: 10.1085/jgp.51.3.279.
4
Anesthetic and calcium action in the voltage-clamped squid giant axon.
J Gen Physiol. 1959 Mar 20;42(4):793-802. doi: 10.1085/jgp.42.4.793.
7
Calcium entry in squid axons during voltage clamp pulses.
Cell Calcium. 1989 Aug-Sep;10(6):413-23. doi: 10.1016/0143-4160(89)90032-8.
8
Modulation of aminopyridine block of potassium currents in squid axon.
Biophys J. 1986 Oct;50(4):637-44. doi: 10.1016/S0006-3495(86)83503-2.
10
Voltage-dependent calcium channel in the squid axon.
Proc Natl Acad Sci U S A. 1983 Mar;80(6):1743-5. doi: 10.1073/pnas.80.6.1743.

引用本文的文献

2
A zinc-dependent Cl- current in neuronal somata.
J Neurosci. 1999 Jul 1;19(13):5195-204. doi: 10.1523/JNEUROSCI.19-13-05195.1999.
3
Potassium channels in squid neuron cell bodies: comparison to axonal channels.
J Membr Biol. 1993 Feb;132(1):13-25. doi: 10.1007/BF00233048.
4
Voltage-independent gating transitions in squid axon potassium channels.
Biophys J. 1995 Feb;68(2):491-500. doi: 10.1016/S0006-3495(95)80210-9.
5
Effects of some heavy metal ions on the ionic currents of myelinated fibres from Xenopus laevis.
J Physiol. 1980 Sep;306:219-31. doi: 10.1113/jphysiol.1980.sp013393.
6
The effect of external potassium on the removal of sodium inactivation in squid giant axons.
J Physiol. 1981 Jun;315:493-514. doi: 10.1113/jphysiol.1981.sp013760.
7
Modulation by calcium of the potassium permeability of dog heart sarcolemmal vesicles.
Proc Natl Acad Sci U S A. 1982 Oct;79(19):5763-7. doi: 10.1073/pnas.79.19.5763.
8
Calcium-activated transient outward current in calf cardiac Purkinje fibres.
J Physiol. 1980 Feb;299:485-506. doi: 10.1113/jphysiol.1980.sp013138.
9
Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers.
Biophys J. 1984 Jan;45(1):301-10. doi: 10.1016/S0006-3495(84)84156-9.
10
Interaction between calcium ions and surface charge as it relates to calcium currents.
J Membr Biol. 1983;72(1-2):117-30. doi: 10.1007/BF01870319.

本文引用的文献

1
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):449-72. doi: 10.1113/jphysiol.1952.sp004717.
2
Potassium ion current in the squid giant axon: dynamic characteristic.
Biophys J. 1960 Sep;1(1):1-14. doi: 10.1016/s0006-3495(60)86871-3.
3
Movements of labelled calcium in squid giant axons.
J Physiol. 1957 Sep 30;138(2):253-81. doi: 10.1113/jphysiol.1957.sp005850.
4
Experiments on the injection of substances into squid giant axons by means of a microsyringe.
J Physiol. 1956 Mar 28;131(3):592-616. doi: 10.1113/jphysiol.1956.sp005485.
5
Bioelectric effects of ions microinjected into the giant axon of Loligo.
J Gen Physiol. 1954 Nov 20;38(2):245-82. doi: 10.1085/jgp.38.2.245.
6
Role of divalent cations in excitation of squid giant axons.
Am J Physiol. 1967 Dec;213(6):1465-74. doi: 10.1152/ajplegacy.1967.213.6.1465.
7
Phospholipids as ion exchangers: implications for a possible role in biological membrane excitability and anesthesia.
Biochim Biophys Acta. 1967 Sep 9;135(4):653-68. doi: 10.1016/0005-2736(67)90096-x.
8
Internally perfused axons: effects of two different anions on ionic conductance.
Science. 1966 Mar 18;151(3716):1392-4. doi: 10.1126/science.151.3716.1392.
9
The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.
J Physiol. 1965 Oct;180(4):821-36. doi: 10.1113/jphysiol.1965.sp007733.
10
Voltage clamp experiments on internally perfused giant axons.
J Physiol. 1965 Oct;180(4):788-820. doi: 10.1113/jphysiol.1965.sp007732.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验