Suppr超能文献

鱿鱼巨轴突中的钾离子电流:动态特性

Potassium ion current in the squid giant axon: dynamic characteristic.

作者信息

COLE K S, MOORE J W

出版信息

Biophys J. 1960 Sep;1(1):1-14. doi: 10.1016/s0006-3495(60)86871-3.

Abstract

Measurements of the potassium current in the squid axon membrane have been made, after changes of the membrane potential to the sodium potential of Hodgkin and Huxley (HH), from near the resting potential, from depolarizations of various durations and amplitudes, and from hyperpolarizations of up to 150 mv. The potassium currents I given by I = I(infinity) {1 - exp [- (t + t(0))/tau]}(25), where t(0) is determined by the initial conditions, represent the new data and approximate the HH functions in the regions for which they are adequate. A corresponding modification for the sodium current does not appear necessary. The results support the HH assumptions of the independence of the potassium and sodium currents, the dependence of the potassium current upon a single parameter determined by the membrane potential, and the expression of this parameter by a first order differential equation, and, although the results drastically modify the analytical expressions, they very considerably extend the range of apparent validity of these assumptions. The delay in the potassium current after severe hyperpolarization is used to estimate a potassium ion mobility in the membrane as 10(-5) of its value in aqueous solutions.

摘要

在将鱿鱼轴突膜的膜电位改变为霍奇金和赫胥黎(HH)的钠电位后,从接近静息电位开始,在不同持续时间和幅度的去极化以及高达150毫伏的超极化情况下,对鱿鱼轴突膜中的钾电流进行了测量。由I = I(∞) {1 - exp[- (t + t(0))/τ]}(25)给出的钾电流I(其中t(0)由初始条件确定)代表了新数据,并且在适用区域内近似于HH函数。对于钠电流,似乎没有必要进行相应的修正。这些结果支持了HH关于钾电流和钠电流独立性、钾电流依赖于由膜电位确定的单个参数以及该参数由一阶微分方程表示的假设,并且,尽管结果极大地修改了分析表达式,但它们非常显著地扩展了这些假设的明显有效性范围。严重超极化后钾电流的延迟被用于估计膜中钾离子的迁移率为其在水溶液中的值的10^(-5) 。

相似文献

1
Potassium ion current in the squid giant axon: dynamic characteristic.
Biophys J. 1960 Sep;1(1):1-14. doi: 10.1016/s0006-3495(60)86871-3.
2
Anesthetic and calcium action in the voltage-clamped squid giant axon.
J Gen Physiol. 1959 Mar 20;42(4):793-802. doi: 10.1085/jgp.42.4.793.
3
A NEW INTERPRETATION OF THE DYNAMIC CHANGES OF THE POTASSIUM CONDUCTANCE IN THE SQUID GIANT AXON.
Biophys J. 1965 Mar;5(2):163-71. doi: 10.1016/s0006-3495(65)86708-x.
4
Some effects of n-pentane on the sodium and potassium currents of the squid giant axon.
J Physiol. 1981 Mar;312:57-70. doi: 10.1113/jphysiol.1981.sp013615.
5
Sodium and potassium ion effluxes from squid axons under voltage clamp conditions.
Biophys J. 1962 May;2(3):257-74. doi: 10.1016/s0006-3495(62)86854-4.
8
The actions of some general anaesthetics on the potassium current of the squid giant axon.
J Physiol. 1986 Apr;373:311-27. doi: 10.1113/jphysiol.1986.sp016049.
9
The mechanisms of sodium current inhibition by benzocaine in the squid giant axon.
Pflugers Arch. 1987 Aug;409(6):596-600. doi: 10.1007/BF00584659.
10
EFFECT OF ETHANOL ON THE SODIUM AND POTASSIUM CONDUCTANCES OF THE SQUID AXON MEMBRANE.
J Gen Physiol. 1964 Nov;48(2):279-95. doi: 10.1085/jgp.48.2.279.

引用本文的文献

1
Molecular Basis of Sodium Channel Inactivation.
Res Sq. 2025 Jun 24:rs.3.rs-6779598. doi: 10.21203/rs.3.rs-6779598/v1.
2
Molecular Basis of Sodium Channel Inactivation.
bioRxiv. 2025 May 23:2025.05.22.655422. doi: 10.1101/2025.05.22.655422.
4
Annihilation of action potentials induces electrical coupling between neurons.
Elife. 2025 Apr 4;12:RP88335. doi: 10.7554/eLife.88335.
6
Turning a Kv channel into hot and cold receptor by perturbing its electromechanical coupling.
bioRxiv. 2024 Aug 9:2024.08.08.607202. doi: 10.1101/2024.08.08.607202.
7
Evaluating sequential and allosteric activation models in IKs channels with mutated voltage sensors.
J Gen Physiol. 2024 Mar 4;156(3). doi: 10.1085/jgp.202313465. Epub 2024 Jan 31.
8
State-independent inhibition of the oncogenic Kv10.1 channel by desethylamiodarone, a comparison with amiodarone.
Pflugers Arch. 2024 Mar;476(3):323-335. doi: 10.1007/s00424-023-02893-x. Epub 2023 Dec 8.
9
Voltage-Gated Potassium Channels Beyond the Action Potential.
Bioelectricity. 2022 Jun 1;4(2):117-125. doi: 10.1089/bioe.2022.0014. Epub 2022 May 26.
10
Polycystin Channel Complexes.
Annu Rev Physiol. 2023 Feb 10;85:425-448. doi: 10.1146/annurev-physiol-031522-084334.

本文引用的文献

1
Some physical aspects of bioelectric phenomena.
Proc Natl Acad Sci U S A. 1949 Oct;35(10):558-66. doi: 10.1073/pnas.35.10.558.
2
The components of membrane conductance in the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):473-96. doi: 10.1113/jphysiol.1952.sp004718.
3
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):449-72. doi: 10.1113/jphysiol.1952.sp004717.
4
Ionic current measurements in the squid giant axon membrane.
J Gen Physiol. 1960 Sep;44(1):123-67. doi: 10.1085/jgp.44.1.123.
5
An analysis of conductance changes in squid axon.
J Gen Physiol. 1959 May 20;42(5):1013-35. doi: 10.1085/jgp.42.5.1013.
7
Excitation of the squid axon membrane in isosmotic potassium chloride.
Nature. 1959 Jan 24;183(4656):265-6. doi: 10.1038/183265b0.
8
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验