Suppr超能文献

大肠杆菌K-12中芳香族氨基酸库的形成。

Formation of aromatic amino acid pools in Escherichia coli K-12.

作者信息

Brown K D

出版信息

J Bacteriol. 1970 Oct;104(1):177-88. doi: 10.1128/jb.104.1.177-188.1970.

Abstract

Phenylalanine, tyrosine, and tryptophan were taken up into cells of Escherichia coli K-12 by a general aromatic transport system. Apparent Michaelis constants for the three amino acids were 4.7 x 10(-7), 5.7 x 10(-7), and 4.0 x 10(-7)m, respectively. High concentrations (> 0.1 mm) of histidine, leucine, methionine, alanine, cysteine, and aspartic acid also had an affinity for this system. Mutants lacking the general aromatic transport system were resistant to p-fluorophenylalanine, beta-2-thienylalanine, and 5-methyltryptophan. They mapped at a locus, aroP, between leu and pan on the chromosome, being 30% cotransducible with leu and 43% cotransducible with pan. Phenylalanine, tyrosine, and tryptophan were also transported by three specific transport systems. The apparent Michaelis constants of these systems were 2.0 x 10(-6), 2.2 x 10(-6), and 3.0 x 10(-6)m, respectively. An external energy source, such as glucose, was not required for activity of either general or specific aromatic transport systems. Azide and 2,4-dinitrophenol, however, inhibited all aromatic transport, indicating that energy production is necessary. Between 80 and 90% of the trichloroacetic acid-soluble pool formed from a particular exogenous aromatic amino acid was generated by the general aromatic transport system. This contribution was abolished when uptake was inhibited by competition by the other aromatic amino acids or by mutation in aroP. Incorporation of the former amino acid into protein was not affected by the reduction in its pool size, indicating that the general aromatic transport system is not essential for the supply of external aromatic amino acids to protein synthesis.

摘要

苯丙氨酸、酪氨酸和色氨酸通过一种通用的芳香族转运系统被吸收进大肠杆菌K - 12细胞。这三种氨基酸的表观米氏常数分别为4.7×10⁻⁷、5.7×10⁻⁷和4.0×10⁻⁷m。高浓度(>0.1 mM)的组氨酸、亮氨酸、蛋氨酸、丙氨酸、半胱氨酸和天冬氨酸对该系统也有亲和力。缺乏通用芳香族转运系统的突变体对对氟苯丙氨酸、β - 2 - 噻吩丙氨酸和5 - 甲基色氨酸具有抗性。它们定位于染色体上亮氨酸和泛酸之间的一个位点aroP,与亮氨酸的共转导率为30%,与泛酸的共转导率为43%。苯丙氨酸、酪氨酸和色氨酸也通过三种特异性转运系统进行转运。这些系统的表观米氏常数分别为2.0×10⁻⁶、2.2×10⁻⁶和3.0×10⁻⁶m。通用或特异性芳香族转运系统的活性都不需要外部能量源,如葡萄糖。然而,叠氮化物和2,4 - 二硝基苯酚会抑制所有芳香族转运,这表明能量产生是必要的。由特定外源芳香族氨基酸形成的三氯乙酸可溶性池中有80%至90%是由通用芳香族转运系统产生的。当摄取因其他芳香族氨基酸的竞争或aroP突变而受到抑制时,这种贡献就会消失。前一种氨基酸掺入蛋白质的过程不受其池大小减少的影响,这表明通用芳香族转运系统对于向蛋白质合成供应外部芳香族氨基酸并非必不可少。

相似文献

1
Formation of aromatic amino acid pools in Escherichia coli K-12.
J Bacteriol. 1970 Oct;104(1):177-88. doi: 10.1128/jb.104.1.177-188.1970.
2
Maintenance and exchange of the aromatic amino acid pool in Escherichia coli.
J Bacteriol. 1971 Apr;106(1):70-81. doi: 10.1128/jb.106.1.70-81.1971.
3
Aromatic amino acid transport in Yersinia pestis.
J Bacteriol. 1975 Jun;122(3):1045-52. doi: 10.1128/jb.122.3.1045-1052.1975.
4
Transport of aromatic amino acids by Pseudomonas aeruginosa.
J Bacteriol. 1971 Mar;105(3):1039-46. doi: 10.1128/jb.105.3.1039-1046.1971.
5
Regulation of aromatic amino acid transport systems in Escherichia coli K-12.
J Bacteriol. 1977 Nov;132(2):453-61. doi: 10.1128/jb.132.2.453-461.1977.
6
Amino acid transport systems in Escherichia coli K-12.
J Biol Chem. 1968 Nov 25;243(22):5914-20.
7
Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids.
J Bacteriol. 1971 Dec;108(3):1034-44. doi: 10.1128/jb.108.3.1034-1044.1971.
8
Mutations affecting aromatic amino acid transport in Escherichia coli and Salmonella typhimurium.
J Gen Microbiol. 1975 Oct;90(2):203-16. doi: 10.1099/00221287-90-2-203.
9
Transport of aromatic amino acids by Brevibacterium linens.
J Bacteriol. 1983 Sep;155(3):1123-9. doi: 10.1128/jb.155.3.1123-1129.1983.

引用本文的文献

1
Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters.
J Microbiol Biotechnol. 2024 Apr 28;34(4):969-977. doi: 10.4014/jmb.2308.08039. Epub 2023 Nov 30.
2
Revealing Allosteric Mechanism of Amino Acid Binding Proteins from Open to Closed State.
Molecules. 2023 Oct 17;28(20):7139. doi: 10.3390/molecules28207139.
3
Whole-cell catalyze L-dopa to dopamine via co-expression of transport protein AroP in Escherichia coli.
BMC Biotechnol. 2023 Aug 29;23(1):33. doi: 10.1186/s12896-023-00794-6.
4
Engineering Endosymbiotic Growth of in Mammalian Cells.
ACS Synth Biol. 2022 Oct 21;11(10):3388-3396. doi: 10.1021/acssynbio.2c00292. Epub 2022 Oct 4.
5
An expanded whole-cell model of E. coli links cellular physiology with mechanisms of growth rate control.
NPJ Syst Biol Appl. 2022 Aug 19;8(1):30. doi: 10.1038/s41540-022-00242-9.
8
Evolving Bacterial Fitness with an Expanded Genetic Code.
Sci Rep. 2018 Feb 19;8(1):3288. doi: 10.1038/s41598-018-21549-w.
10
Role of the two structural domains from the periplasmic Escherichia coli histidine-binding protein HisJ.
J Biol Chem. 2013 Nov 1;288(44):31409-22. doi: 10.1074/jbc.M113.490441. Epub 2013 Sep 13.

本文引用的文献

1
Mutants of Escherichia coli requiring methionine or vitamin B12.
J Bacteriol. 1950 Jul;60(1):17-28. doi: 10.1128/jb.60.1.17-28.1950.
3
UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM.
Arch Biochem Biophys. 1964 Jan;104:1-18. doi: 10.1016/s0003-9861(64)80028-x.
4
STUDIES ON TRYPTOPHAN PERMEASE IN ESCHERICHIA COLI.
Biochim Biophys Acta. 1963 Aug 6;73:623-37. doi: 10.1016/0006-3002(63)90332-9.
5
The amino acid pool in Escherichia coli.
Bacteriol Rev. 1962 Sep;26(3):292-335. doi: 10.1128/br.26.3.292-335.1962.
6
Hybridization between Escherichia coli and Shigella.
J Bacteriol. 1957 Oct;74(4):461-76. doi: 10.1128/jb.74.4.461-476.1957.
7
The mechanism of genetic recombination in Escherichia coli.
Cold Spring Harb Symp Quant Biol. 1953;18:75-93. doi: 10.1101/sqb.1953.018.01.016.
8
Molecular transport in Neurospora crassa. I. Biochemical properties of a phenylalanine permease.
Biochim Biophys Acta. 1965 Jun 15;104(1):139-50. doi: 10.1016/0304-4165(65)90229-1.
9
Genetic analysis of glutamate transport and glutamate decarboxylase in Escherichia coli.
J Bacteriol. 1967 Apr;93(4):1409-15. doi: 10.1128/jb.93.4.1409-1415.1967.
10
Low recombination frequency for markers very near the origin in conjugation in E. coli.
Genet Res. 1965 Nov;6(3):469-73. doi: 10.1017/s0016672300004341.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验