Suppr超能文献

两种神经元模型的频率响应、相干性和信息容量。

The frequency response, coherence, and information capacity of two neuronal models.

作者信息

Stein R B, French A S, Holden A V

出版信息

Biophys J. 1972 Mar;12(3):295-322. doi: 10.1016/S0006-3495(72)86087-9.

Abstract

Two neuronal models are analyzed in which subthreshold inputs are integrated either without loss (perfect integrator) or with a decay which follows an exponential time course (leaky integrator). Linear frequency response functions for these models are compared using sinusoids, Poisson-distributed impulses, or gaussian white noise as inputs. The responses of both models show the nonlinear behavior characteristic of a rectifier for sinusoidal inputs of sufficient amplitude. The leaky integrator shows another nonlinearity in which responses become phase locked to cyclic stimuli. Addition of white noise reduces the distortions due to phase locking. Both models also show selective attenuation of high-frequency components with white noise inputs. Input, output, and cross-spectra are computed using inputs having a broad frequency spectrum. Measures of the coherence and information transmission between the input and output of the models are also derived. Steady inputs, which produce a constant "carrier" rate, and intrinsic sources, which produce variability in the discharge of neurons, may either increase or decrease coherence; however, information transmission using inputs with a broad spectrum is generally increased by steady inputs and reduced by intrinsic variability.

摘要

分析了两种神经元模型,其中阈下输入要么无损耗地进行整合(完美积分器),要么以指数时间进程进行衰减整合(泄漏积分器)。使用正弦波、泊松分布脉冲或高斯白噪声作为输入,比较了这些模型的线性频率响应函数。对于足够幅度的正弦输入,两种模型的响应均表现出整流器的非线性行为特征。泄漏积分器还表现出另一种非线性,即响应与周期性刺激发生锁相。添加白噪声可减少由于锁相引起的失真。对于白噪声输入,两种模型还表现出高频成分的选择性衰减。使用具有广泛频谱的输入来计算输入、输出和互谱。还推导了模型输入和输出之间的相干性和信息传输的度量。产生恒定“载波”速率的稳定输入以及在神经元放电中产生变异性的内在源,可能会增加或降低相干性;然而,使用具有广泛频谱的输入进行信息传输通常会因稳定输入而增加,因内在变异性而降低。

相似文献

1
The frequency response, coherence, and information capacity of two neuronal models.
Biophys J. 1972 Mar;12(3):295-322. doi: 10.1016/S0006-3495(72)86087-9.
2
Synchronization of the neural response to noisy periodic synaptic input.
Neural Comput. 2001 Dec;13(12):2639-72. doi: 10.1162/089976601317098475.
5
6
On-line identification of sensory systems using pseudorandom binary noise perturbations.
Biophys J. 1975 Jun;15(6):505-32. doi: 10.1016/S0006-3495(75)85835-8.
8
Complementary responses to mean and variance modulations in the perfect integrate-and-fire model.
Biol Cybern. 2009 Jul;101(1):63-70. doi: 10.1007/s00422-009-0317-6. Epub 2009 May 27.
10
Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin-Huxley channels.
J Theor Biol. 2009 Nov 7;261(1):83-92. doi: 10.1016/j.jtbi.2009.07.006. Epub 2009 Jul 15.

引用本文的文献

1
Neural burst codes disguised as rate codes.
Sci Rep. 2021 Aug 5;11(1):15910. doi: 10.1038/s41598-021-95037-z.
2
Changes in electrophysiological properties of photoreceptors in Periplaneta americana associated with the loss of screening pigment.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018 Nov;204(11):915-928. doi: 10.1007/s00359-018-1290-0. Epub 2018 Sep 20.
3
Effects of phase correlations in naturalistic stimuli on quantitative information coding by fly photoreceptors.
J Neurophysiol. 2018 Jun 1;119(6):2276-2290. doi: 10.1152/jn.00017.2018. Epub 2018 Mar 14.
4
Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise.
J Comput Neurosci. 2017 Aug;43(1):81-91. doi: 10.1007/s10827-017-0649-5. Epub 2017 Jun 6.
5
Information filtering in resonant neurons.
J Comput Neurosci. 2015 Dec;39(3):349-70. doi: 10.1007/s10827-015-0580-6. Epub 2015 Nov 6.
6
In vivo conditions induce faithful encoding of stimuli by reducing nonlinear synchronization in vestibular sensory neurons.
PLoS Comput Biol. 2011 Jul;7(7):e1002120. doi: 10.1371/journal.pcbi.1002120. Epub 2011 Jul 21.
7
Information theory in neuroscience.
J Comput Neurosci. 2011 Feb;30(1):1-5. doi: 10.1007/s10827-011-0314-3.
8
Efficient encoding of vocalizations in the auditory midbrain.
J Neurosci. 2010 Jan 20;30(3):802-19. doi: 10.1523/JNEUROSCI.1964-09.2010.
9
Slow adaptation in spider mechanoreceptor neurons.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 May;191(5):403-11. doi: 10.1007/s00359-004-0597-1. Epub 2005 Mar 5.
10
Afferent diversity and the organization of central vestibular pathways.
Exp Brain Res. 2000 Feb;130(3):277-97. doi: 10.1007/s002210050033.

本文引用的文献

1
RANDOM WALK MODELS FOR THE SPIKE ACTIVITY OF A SINGLE NEURON.
Biophys J. 1964 Jan;4(1 Pt 1):41-68. doi: 10.1016/s0006-3495(64)86768-0.
2
Analysis of the exponential decay model of the neuron showing frequency threshold effects.
Bull Math Biophys. 1969 Jun;31(2):341-57. doi: 10.1007/BF02477011.
4
Synaptic noise and other sources of randomness in motoneuron interspike intervals.
J Neurophysiol. 1968 Jul;31(4):574-87. doi: 10.1152/jn.1968.31.4.574.
5
Spectral analysis of pulse frequency modulation in the nervous systems.
IEEE Trans Biomed Eng. 1968 Oct;15(4):257-65. doi: 10.1109/tbme.1968.4502576.
6
A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus.
J Gen Physiol. 1970 Oct;56(4):421-37. doi: 10.1085/jgp.56.4.421.
7
Characteristics of neural transmission from the semicircular canal to the vestibular nuclei of cats.
J Physiol. 1970 Aug;209(2):295-316. doi: 10.1113/jphysiol.1970.sp009166.
8
A flexible neural analog using integrated circuits.
IEEE Trans Biomed Eng. 1970 Jul;17(3):248-53. doi: 10.1109/tbme.1970.4502739.
9
Statistical analysis and functional interpretation of neuronal spike data.
Annu Rev Physiol. 1966;28:493-522. doi: 10.1146/annurev.ph.28.030166.002425.
10
Alias-free sampling of neuronal spike trains.
Kybernetik. 1971 May;8(5):165-71. doi: 10.1007/BF00291117.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验