Blankenburg Sven, Wu Wei, Lindner Benjamin, Schreiber Susanne
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
Institute for Theoretical Biology and Physics Department, Humboldt-Universität zu Berlin, Berlin, Germany.
J Comput Neurosci. 2015 Dec;39(3):349-70. doi: 10.1007/s10827-015-0580-6. Epub 2015 Nov 6.
Neuronal information transmission is frequency specific. In single cells, a band-pass like frequency preference can arise from the subthreshold dynamics of the membrane potential, shaped by properties of the cell's membrane and its ionic channels. In these cases, a cell is termed resonant and its membrane impedance spectrum exhibits a peak at non-vanishing frequencies. Here, we show that this frequency selectivity of neuronal response amplitudes need not translate into a similar frequency selectivity of information transfer. In particular, neurons with resonant but linear subthreshold voltage dynamics (without threshold) do not show a resonance of information transfer at the level of subthreshold voltage; the corresponding coherence has low-pass characteristics. Interestingly, we find that when combined with nonlinearities, subthreshold resonances do shape the frequency dependence of coherence and the peak in the subthreshold impedance translates to a peak in the coherence function. In other words, the nonlinearity inherent to spike generation allows a subthreshold impedance resonance to shape a resonance of voltage-based information transfer. We demonstrate such nonlinearity-mediated band-pass filtering of information at frequencies close to the subthreshold impedance resonance in three different model systems: the resonate-and-fire model, the conductance-based Morris-Lecar model, and linear resonant dynamics combined with a simple static nonlinearity. In the spiking neuron models, the band-pass filtering is most pronounced for low firing rates and a high variability of interspike intervals, similar to the spiking statistics observed in vivo. We show that band-pass filtering is achieved by reducing information transfer over low-frequency components and, consequently, comes along with an overall reduction of information rate. Our work highlights the crucial role of nonlinearities for the frequency dependence of neuronal information transmission.
神经元信息传递具有频率特异性。在单个细胞中,类似带通的频率偏好可源于膜电位的阈下动态变化,这种变化由细胞膜及其离子通道的特性所塑造。在这些情况下,细胞被称为共振细胞,其膜阻抗谱在非零频率处呈现一个峰值。在这里,我们表明神经元反应幅度的这种频率选择性并不一定会转化为信息传递的类似频率选择性。特别是,具有共振但线性阈下电压动态变化(无阈值)的神经元在阈下电压水平上不会表现出信息传递的共振;相应的相干性具有低通特性。有趣的是,我们发现当与非线性相结合时,阈下共振确实会塑造相干性的频率依赖性,并且阈下阻抗中的峰值会转化为相干函数中的峰值。换句话说,动作电位产生所固有的非线性允许阈下阻抗共振塑造基于电压的信息传递的共振。我们在三种不同的模型系统中展示了这种在接近阈下阻抗共振频率处对信息的非线性介导带通滤波:共振发放模型、基于电导的莫里斯 - 勒卡尔模型以及线性共振动态与简单静态非线性相结合的模型。在发放神经元模型中,带通滤波在低发放率和动作电位间隔的高变异性情况下最为明显,这与体内观察到的发放统计情况相似。我们表明,带通滤波是通过减少低频成分的信息传递来实现的,因此伴随着信息率的整体降低。我们的工作突出了非线性在神经元信息传递频率依赖性方面的关键作用。