Suppr超能文献

D-Mannitol dehydrogenase from Absidia glauca. Purification, metabolic role, and subunit interactions.

作者信息

Ueng S T, Hartanowicz P, Lewandoski C, Keller J, Holick M, McGuinness E T

出版信息

Biochemistry. 1976 Apr 20;15(8):1743-9. doi: 10.1021/bi00653a023.

Abstract

When Absidia glauca was grown in minimal media with D-mannitol as the only source of carbon, an NAD+ specific D-mannitol dehydrogenase (EC 1.1.1.67) was induced. The crude extract also gave evidence of mannitol kinase, mannitol-1-phosphate dehydrogenase, phosphofructokinase, and L-iditol dehydrogenase activity. The heat labile purified preparation was judged enzymically homogeneous based on evidence derived from substrate specificity studies and activity staining, following disc gel electrophoresis. The enzymic monomer, with a weight of about 67000 daltons, slowly polymerizes when stored at -20 degrees C, giving a multiplicity of protein bands on electrophoresis distributed predominantly across a spectrum from dimer to pentamer, with enzymic activity resident predominantly in even multiples of the monomer. Depolymerization occurred rapidly (hours) when a frozen preparation was brought to and held between 4 and 20 degrees C. Aggregate fragmentation with sodium dodecyl sulfate showed a time-temperature dependence, terminating in a subunit component of 13000 daltons. pH optimum for polyol oxidation occurs at 9.6 (NaOH-glycine buffer) while ketose reduction proceeded most rapidly at pH 7.0-7.2 (phosphate buffer). A regulatory role is suggested for this enzyme based on dead-end inhibition by mannitol 1-phosphate, multiple enzyme forms, and its locus at the initiation site for mannitol utilization. The physiological relevance of low-temperature aggregation to regulatory control remains to be established.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验